Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry
-
Published:2020-05-19
Issue:5
Volume:13
Page:2501-2522
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Pfeifer JoschkaORCID, Simon MarioORCID, Heinritzi Martin, Piel FelixORCID, Weitz Lena, Wang DongyuORCID, Granzin Manuel, Müller Tatjana, Bräkling Steffen, Kirkby JasperORCID, Curtius JoachimORCID, Kürten Andreas
Abstract
Abstract. Here we describe the design and performance of a new
water cluster chemical ionization–atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF). The instrument selectively measures
trace gases with high proton affinity such as ammonia and dimethylamine,
which are important for atmospheric new particle formation and growth.
Following the instrument description and characterization, we demonstrate
successful measurements at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets)
chamber where very low ammonia background levels of ∼4 pptv
were achieved (at 278 K and 80 % RH). The limit of detection of the water
cluster CI-APi-TOF is estimated to be ∼0.5 pptv for ammonia.
Although no direct calibration was performed for dimethylamine (DMA), we
estimate its detection limit is at least 3 times lower. Due to the short
ion–molecule reaction time and high reagent ion concentrations, ammonia
mixing ratios up to at least 10 ppbv can be measured with the instrument
without significant reagent ion depletion. Besides the possibility to
measure compounds like ammonia and amines (dimethylamine), we demonstrate
that the ionization scheme is also suitable for the measurement of trace
gases containing iodine. During CLOUD experiments to investigate the
formation of new particles from I2, many different iodine-containing
species were identified with the water cluster CI-APi-TOF. The compounds
included iodic acid and neutral molecular clusters containing up to
four iodine atoms. However, the molecular structures of the
iodine-containing clusters are ambiguous due to the presence of an unknown
number of water molecules. The quantification of iodic acid (HIO3)
mixing ratios is performed from an intercomparison with a nitrate
CI-APi-TOF. Using this method the detection limit for HIO3 can be
estimated as 0.007 pptv. In addition to presenting our measurements obtained
at the CLOUD chamber, we discuss the applicability of the water cluster
Ci-APi-TOF for atmospheric measurements.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference78 articles.
1. Aljawhary, D., Lee, A. K. Y., and Abbatt, J. P. D.: High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing, Atmos. Meas. Tech., 6, 3211–3224, https://doi.org/10.5194/amt-6-3211-2013, 2013. 2. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013. 3. Baron, P. A. and Willeke, K.: Aerosol measurement: Principles, techniques,
and applications, 2nd ed., Wiley, New York, xxiii, 1131, 2001. 4. Bell, C. L., Dhib, M., Hancock, G., Ritchie, G. A. D., van Helden, J. H.,
and van Leeuwen, N. J.: Cavity enhanced absorption spectroscopy measurements
of pressure-induced broadening and shift coefficients in the υ
1+υ 3 combination band of ammonia, Appl. Phys. B, 94, 327–336,
https://doi.org/10.1007/s00340-008-3238-5, 2009. 5. Benson, D. R., Markovich, A., Al-Refai, M., and Lee, S.-H.: A Chemical Ionization Mass Spectrometer for ambient measurements of Ammonia, Atmos. Meas. Tech., 3, 1075–1087, https://doi.org/10.5194/amt-3-1075-2010, 2010.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|