High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing

Author:

Aljawhary D.ORCID,Lee A. K. Y.,Abbatt J. P. D.ORCID

Abstract

Abstract. This paper demonstrates the capabilities of chemical ionization mass spectrometry (CIMS) to study secondary organic aerosol (SOA) composition with a high-resolution (HR) time-of-flight mass analyzer (aerosol-ToF-CIMS). In particular, by studying aqueous oxidation of water-soluble organic compounds (WSOC) extracted from α-pinene ozonolysis SOA, we assess the capabilities of three common CIMS reagent ions: (a) protonated water clusters (H2O)nH+, (b) acetate CH3C(O)O− and (c) iodide water clusters I(H2O)n− to monitor SOA composition. Furthermore, we report the relative sensitivity of these reagent ions to a wide range of common organic aerosol constituents. We find that (H2O)nH+ is more selective to the detection of less oxidized species, so that the range of O / C and OSC (carbon oxidation state) in the SOA spectra is considerably lower than those measured using CH3C(O)O− and I(H2O)n−. Specifically, (H2O)nH+ ionizes organic compounds with OSC ≤ 1.3, whereas CH3C(O)O− and I(H2O)n− both ionize highly oxygenated organics with OSC up to 4 with I(H2O)n− being more selective towards multi-functional organic compounds. In the bulk O / C and H / C space (in a Van Krevelen plot), there is a remarkable agreement in both absolute magnitude and oxidation trajectory between ToF-CIMS data and those from a high-resolution aerosol mass spectrometer (HR-AMS). Despite not using a sensitivity-weighted response for the ToF-CIMS data, the CIMS approach appears to capture much of the chemical change occurring. As demonstrated by the calibration experiments with standards, this is likely because there is not a large variability in sensitivities from one highly oxygenated species to another, particularly for the CH3C(O)O− and I(H2O)n− reagent ions. Finally, the data illustrate the capability of aerosol-ToF-CIMS to monitor specific chemical change, including the fragmentation and functionalization reactions that occur during organic oxidation, and the oxidative conversion of dimeric SOA species into monomers. Overall, aerosol-ToF-CIMS is a valuable, selective complement to some common SOA characterization methods, such as AMS and spectroscopic techniques. Both laboratory and ambient SOA samples can be analyzed using the techniques illustrated in the paper.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference55 articles.

1. Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350–8358, 2007.

2. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O / C and OM / OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, 2008.

3. Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476–1490, 2008.

4. Bateman, A. P., Walser, M. L., Desyaterik, Y., Laskin, J., Laskin, A., and Nizkorodov, S. A.: The effect of solvent on the analysis of secondary organic aerosol using electrospray ionization mass spectrometry, Environ. Sci. Technol., 42, 7341–7346, 2008.

5. Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct measurement of N2O5 reactivity on ambient particles, Atmos. Meas. Tech., 2, 231–242, https://doi.org/10.5194/amt-2-231-2009, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3