Comparison of airborne measurements of NO, NO2, HONO, NOy, and CO during FIREX-AQ

Author:

Bourgeois IlannORCID,Peischl JeffORCID,Neuman J. AndrewORCID,Brown Steven S.,Allen Hannah M.,Campuzano-Jost PedroORCID,Coggon Matthew M.,DiGangi Joshua P.ORCID,Diskin Glenn S.ORCID,Gilman Jessica B.,Gkatzelis Georgios I.ORCID,Guo HongyuORCID,Halliday Hannah A.ORCID,Hanisco Thomas F.ORCID,Holmes Christopher D.ORCID,Huey L. GregoryORCID,Jimenez Jose L.ORCID,Lamplugh Aaron D.,Lee Young Ro,Lindaas JakobORCID,Moore Richard H.ORCID,Nault Benjamin A.ORCID,Nowak John B.ORCID,Pagonis Demetrios,Rickly Pamela S.ORCID,Robinson Michael A.ORCID,Rollins Andrew W.,Selimovic Vanessa,St. Clair Jason M.ORCID,Tanner David,Vasquez Krystal T.,Veres Patrick R.ORCID,Warneke Carsten,Wennberg Paul O.,Washenfelder Rebecca A.,Wiggins Elizabeth B.,Womack Caroline C.ORCID,Xu LuORCID,Zarzana Kyle J.ORCID,Ryerson Thomas B.ORCID

Abstract

Abstract. We present a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO2), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOy) and from the sum of individually measured species (ΣNOy)), and carbon monoxide (CO) in the troposphere during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. By targeting smoke from summertime wildfires, prescribed fires, and agricultural burns across the continental United States, FIREX-AQ provided a unique opportunity to investigate measurement accuracy in concentrated plumes where hundreds of species coexist. Here, we compare NO measurements by chemiluminescence (CL) and laser-induced fluorescence (LIF); NO2 measurements by CL, LIF, and cavity-enhanced spectroscopy (CES); HONO measurements by CES and iodide-adduct chemical ionization mass spectrometry (CIMS); and CO measurements by tunable diode laser absorption spectrometry (TDLAS) and integrated cavity output spectroscopy (ICOS). Additionally, total NOy measurements using the CL instrument were compared with ΣNOy (= NO + NO2 + HONO + nitric acid (HNO3) + acyl peroxy nitrates (APNs) + submicrometer particulate nitrate (pNO3)). Other NOy species were not included in ΣNOy as they either contributed minimally to it (e.g., C1–C5 alkyl nitrates, nitryl chloride (ClNO2), dinitrogen pentoxide (N2O5)) or were not measured during FIREX-AQ (e.g., higher oxidized alkyl nitrates, nitrate (NO3), non-acyl peroxynitrates, coarse-mode aerosol nitrate). The aircraft instrument intercomparisons demonstrate the following points: (1) NO measurements by CL and LIF agreed well within instrument uncertainties but with potentially reduced time response for the CL instrument; (2) NO2 measurements by LIF and CES agreed well within instrument uncertainties, but CL NO2 was on average 10 % higher; (3) CES and CIMS HONO measurements were highly correlated in each fire plume transect, but the correlation slope of CES vs. CIMS for all 1 Hz data during FIREX-AQ was 1.8, which we attribute to a reduction in the CIMS sensitivity to HONO in high-temperature environments; (4) NOy budget closure was demonstrated for all flights within the combined instrument uncertainties of 25 %. However, we used a fluid dynamic flow model to estimate that average pNO3 sampling fraction through the NOy inlet in smoke was variable from one flight to another and ranged between 0.36 and 0.99, meaning that approximately 0 %–24 % on average of the total measured NOy in smoke may have been unaccounted for and may be due to unmeasured species such as organic nitrates; (5) CO measurements by ICOS and TDLAS agreed well within combined instrument uncertainties, but with a systematic offset that averaged 2.87 ppbv; and (6) integrating smoke plumes followed by fitting the integrated values of each plume improved the correlation between independent measurements.

Funder

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3