Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
-
Published:2024-08-29
Issue:16
Volume:24
Page:9573-9595
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Nault Benjamin A.ORCID, Travis Katherine R.ORCID, Crawford James H., Blake Donald R., Campuzano-Jost PedroORCID, Cohen Ronald C.ORCID, DiGangi Joshua P.ORCID, Diskin Glenn S.ORCID, Hall Samuel R., Huey L. GregoryORCID, Jimenez Jose L.ORCID, Min Kyung-Eun, Lee Young Ro, Simpson Isobel J., Ullmann Kirk, Wisthaler Armin
Abstract
Abstract. Ozone (O3) is an important secondary pollutant that impacts air quality and human health. Eastern Asia has high regional O3 background due to the numerous sources and increasing and rapid industrial growth, which also impacts the Seoul Metropolitan Area (SMA). However, the SMA has also been experiencing increasing O3 driven by decreasing NOx emissions, highlighting the role of the local in situ O3 production on the SMA. Here, comprehensive gas-phase measurements collected on the NASA DC-8 during the National Institute of Environmental Research (NIER)/NASA Korea–United States Air Quality (KORUS-AQ) study are used to constrain the instantaneous O3 production rate over the SMA. The observed NOx oxidized products support the importance of non-measured peroxy nitrates (PNs) in the O3 chemistry in the SMA, as they accounted for ∼49 % of the total PNs. Using the total measured PNs (ΣPNs) and alkyl and multifunctional nitrates (ΣANs), unmeasured volatile organic compound (VOC) reactivity (R(VOC)) is constrained and found to range from 1.4–2.1 s−1. Combining the observationally constrained R(VOC) with the other measurements on the DC-8, the instantaneous net O3 production rate, which is as high as ∼10 ppbv h−1, along with the important sinks of O3 and radical chemistry, is constrained. This analysis shows that ΣPNs play an important role in both the sinks of O3 and radical chemistry. Since ΣPNs are assumed to be in a steady state, the results here highlight the role that ΣPNs play in urban environments in altering the net O3 production, but ΣPNs can potentially lead to increased net O3 production downwind due to their short lifetime (∼1 h). The results provide guidance for future measurements to identify the missing R(VOCs) and ΣPN production.
Funder
Langley Research Center Bundesministerium für Verkehr, Innovation und Technologie
Publisher
Copernicus GmbH
Reference109 articles.
1. Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R., Young, P. J., Akiyoshi, H., Cox, R. A., Coyle, M., Derwent, R. G., Deushi, M., Finco, A., Frost, G. J., Galbally, I. E., Gerosa, G., Granier, C., Griffiths, P. T., Hossaini, R., Hu, L., Jöckel, P., Josse, B., Lin, M. Y., Mertens, M., Morgenstern, O., Naja, M., Naik, V., Oltmans, S., Plummer, D. A., Revell, L. E., Saiz-Lopez, A., Saxena, P., Shin, Y. M., Shahid, I., Shallcross, D., Tilmes, S., Trickl, T., Wallington, T. J., Wang, T., Worden, H. M., and Zeng, G.: Tropospheric ozone assessment report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100, Elementa, 8, 034, https://doi.org/10.1525/elementa.2020.034, 2020. 2. Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, https://doi.org/10.5194/acp-3-2233-2003, 2003. 3. Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/CR0206420, 2003. 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 5. Bohn, B. and Zetzsch, C.: Kinetics and mechanism of the reaction of OH with the trimethylbenzenes – experimental evidence for the formation of adduct isomers, Phys. Chem. Chem. Phys., 14, 13933, https://doi.org/10.1039/c2cp42434g, 2012.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|