A new method for continuous measurements of oceanic and atmospheric N<sub>2</sub>O, CO and CO<sub>2</sub>: performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR)

Author:

Arévalo-Martínez D. L.,Beyer M.,Krumbholz M.,Piller I.,Kock A.,Steinhoff T.,Körtzinger A.,Bange H. W.ORCID

Abstract

Abstract. A new system for continuous, highly resolved oceanic and atmospheric measurements of N2O, CO and CO2 is described. The system is based upon off-axis integrated cavity output spectroscopy (OA-ICOS) and a non-dispersive infrared analyzer (NDIR), both coupled to a Weiss-type equilibrator. Performance of the combined setup was evaluated by testing its precision, accuracy, long-term stability, linearity and response time. Furthermore, the setup was tested during two oceanographic campaigns in the equatorial Atlantic Ocean in order to explore its potential for autonomous deployment onboard voluntary observing ships (VOS). Improved equilibrator response times for N2O (2.5 min) and CO (45 min) were achieved in comparison to response times from similar chamber designs used by previous studies. High stability of the OA-ICOS analyzer was demonstrated by low optimal integration times of 2 and 4 min for N2O and CO respectively, as well as detection limits of < 40 ppt and precision better than 0.3 ppb Hz–1/2. Results from a direct comparison of the method presented here and well-established discrete methods for oceanic N2O and CO2 measurements showed very good consistency. The favorable agreement between underway atmospheric N2O, CO and CO2 measurements and monthly means at Ascension Island (7.96° S 14.4° W) further suggests a reliable operation of the underway setup in the field. The potential of the system as an improved platform for measurements of trace gases was explored by using continuous N2O and CO2 data to characterize the development of the seasonal equatorial upwelling in the Atlantic Ocean during two R/V Maria S. Merian cruises. A similar record of high-resolution CO measurements was simultaneously obtained, offering, for the first time, the possibility of a comprehensive view of the distribution and emissions of these climate-relevant gases in the area studied. The relatively simple underway N2O/CO/CO2 setup is suitable for long-term deployment onboard research and commercial vessels although potential sources of drift, such as cavity temperature, and further technical improvements towards automation, still need to be addressed.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3