The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty

Author:

Baur SusanneORCID,Nauels AlexanderORCID,Nicholls ZebedeeORCID,Sanderson Benjamin M.,Schleussner Carl-FriedrichORCID

Abstract

Abstract. A growing body of literature investigates the effects of solar radiation modification (SRM) on global and regional climates. Previous studies have focused on the potentials and the side effects of SRM, with little attention being given to possible deployment timescales and the levels of carbon dioxide removal required for a phase out. Here, we investigate the deployment timescales of SRM and how they are affected by different levels of mitigation, net-negative emissions (NNEs) and climate uncertainty. We generate a large dataset of 355 emission scenarios in which SRM is deployed to keep warming levels at 1.5 ∘C global mean temperature. Probabilistic climate projections from this ensemble result in a large range of plausible future warming and cooling rates that lead to various SRM deployment timescales. In all pathways consistent with extrapolated current ambition, SRM deployment would exceed 100 years even under the most optimistic assumptions regarding climate response. As soon as the temperature threshold is exceeded, neither mitigation nor NNEs or climate sensitivity alone can guarantee short deployment timescales. Since the evolution of mitigation under SRM, the availability of carbon removal technologies and the effects of climate reversibility will be mostly unknown at its initialisation time, it is impossible to predict how temporary SRM deployment would be. Any deployment of SRM therefore comes with the risk of multi-century legacies of deployment, implying multi-generational commitments of costs, risks and negative side effects of SRM and NNEs combined.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3