The Potential of Stratospheric Aerosol Injection to Reduce the Climatic Risks of Explosive Volcanic Eruptions

Author:

Quaglia I.1ORCID,Visioni D.2ORCID,Bednarz E. M.134ORCID,MacMartin D. G.1ORCID,Kravitz B.56ORCID

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca NY USA

2. Department of Earth and Atmospheric Sciences Cornell University Ithaca NY USA

3. Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder Boulder CO USA

4. NOAA Chemical Sciences Laboratory (NOAA CSL) Boulder CO USA

5. Department of Earth and Atmospheric Sciences Indiana University Bloomington IN USA

6. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractSulfur‐rich volcanic eruptions happen sporadically. If Stratospheric Aerosol Injection (SAI) were to be deployed, it is likely that explosive volcanic eruptions would happen during such a deployment. Here we use an ensemble of Earth System Model simulations to show how changing the injection strategy post‐eruption could be used to reduce the climate risks of a large volcanic eruption; the risks are also modified even without any change to the strategy. For a medium‐size eruption (10 Tg‐SO2) comparable to the SAI injection rate, the volcanic‐induced cooling would be reduced if it occurs under SAI, especially if artificial sulfur dioxide injections were immediately suspended. Alternatively, suspending injection only in the eruption hemisphere and continuing injection in the opposite would reduce shifts in precipitation in the tropical belt and thus mitigate eruption‐induced drought. Finally, we show that for eruptions much larger than the SAI deployment, changes in SAI strategy would have minimal effect.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emulating inconsistencies in stratospheric aerosol injection;Environmental Research: Climate;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3