How much methane removal is required to avoid overshooting 1.5 C?

Author:

Smith ChrisORCID,Mathison CamillaORCID

Abstract

Abstract Methane is the second most important anthropogenic greenhouse gas after carbon dioxide. With an atmospheric lifetime of around a decade, methane mitigation starting immediately has the potential to avoid substantial levels of additional warming by mid-century. In addition to the methane emissions reductions that are necessary to limit warming, we address the question of whether technological methane removal can provide additional benefits by avoiding global mean surface temperatures exceeding 1.5 C above pre-industrial—the high-ambition Paris Agreement climate goal. Using an adaptive emissions methane removal routine in a simple climate model, we successfully limit peak warming to 1.5 C for overshoots of up to around 0.3 C. For substantially higher overshoots, methane removal alone is unable to limit warming to 1.5 C, but in an extreme scenario could limit peak warming by an ensemble median 0.7 C if all atmospheric methane was removed, requiring huge levels of net removal on the order of tens of petagrams cumulatively. The efficacy of methane removal depends on many emergent properties of the climate system, including climate sensitivity, aerosol forcing, and the committed warming after net zero CO2 (zero emissions commitment). To avoid overshooting 1.5 C in the low-overshoot, strong-mitigation SSP1-1.9 scenario, a median cumulative methane removal of 1.2 PgCH4 is required, though this may be much higher if climate sensitivity is high or the zero emissions commitment is positive, and in these cases may require ongoing methane removal long after peak warming in order to stabilise warming below 1.5 C.

Funder

Natural Environment Research Council

HORIZON EUROPE Climate, Energy and Mobility

Publisher

IOP Publishing

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3