Development of a flash drought intensity index

Author:

Otkin JasonORCID,Zhong Yafang,Hunt Eric,Christian Jordan,Basara JeffORCID,Nguyen Hanh,Wheeler Matthew,Ford Trent,Hoell Andrew,Svoboda Mark,Anderson Martha

Abstract

<p>Flash droughts are characterized by a period of unusually rapid drought intensification over sub-seasonal time scales that often take vulnerable stakeholders by surprise given their rapid onset. Various studies have shown that flash drought is more likely to develop when extreme weather conditions persist over the same region for several weeks or longer. Though precipitation deficits over some period of time are a prerequisite for drought, their presence alone is unlikely to lead to flash drought because a lack of precipitation is only one of several factors that contribute to rapid drought development. When below normal precipitation occurs alongside other extreme weather anomalies such as intense heat that enhance atmospheric evaporative demand, their co-occurrence can lead to a rapid depletion of root zone soil moisture content due to increased evapotranspiration. This in turn can lead to a rapid increase in vegetation moisture stress and the onset of flash drought conditions.</p><p>Several recent studies have used quantitative definitions based on rapid changes in a given drought monitoring dataset to identify flash droughts in the climatological record. Here, we build upon these recent studies by developing a new flash drought intensity index that accounts not only for their rapid rate of intensification, but also for how severe the drought conditions become during and after the period of rapid intensification. The method includes two components that together capture the suddenness of flash drought development (faster intensification corresponds to a more severe flash drought) and the actual drought severity after the rapid intensification period ends (severe drought conditions lasting for a longer period correspond to a more severe flash drought). The motivation behind this method is the desire to account for both the “flash” and “drought” aspects of flash drought because both of these characteristics influence how people view flash droughts. Thus, a metric that considers both of these aspects provides a more comprehensive assessment of flash drought intensity and its impacts on the environment. In this talk, we will present the proposed flash drought intensity index methodology, along with results from individual case studies and a 40-year climatology to illustrate its use.</p>

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3