Investigating the Response of Vegetation to Flash Droughts by Using Cross-Spectral Analysis and an Evapotranspiration-Based Drought Index

Author:

Li Peng123ORCID,Jia Li12ORCID,Lu Jing1,Jiang Min1ORCID,Zheng Chaolei1,Menenti Massimo14ORCID

Affiliation:

1. Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2825 CN Delft, The Netherlands

Abstract

Flash droughts tend to cause severe damage to agriculture due to their characteristics of sudden onset and rapid intensification. Early detection of the response of vegetation to flash droughts is of utmost importance in mitigating the effects of flash droughts, as it can provide a scientific basis for establishing an early warning system. The commonly used method of determining the response time of vegetation to flash drought, based on the response time index or the correlation between the precipitation anomaly and vegetation growth anomaly, leads to the late detection of irreversible drought effects on vegetation, which may not be sufficient for use in analyzing the response of vegetation to flash drought for early earning. The evapotranspiration-based (ET-based) drought indices are an effective indicator for identifying and monitoring flash drought. This study proposes a novel approach that applies cross-spectral analysis to an ET-based drought index, i.e., Evaporative Stress Anomaly Index (ESAI), as the forcing and a vegetation-based drought index, i.e., Normalized Vegetation Anomaly Index (NVAI), as the response, both from medium-resolution remote sensing data, to estimate the time lag of the response of vegetation vitality status to flash drought. An experiment on the novel method was carried out in North China during March–September for the period of 2001–2020 using remote sensing products at 1 km spatial resolution. The results show that the average time lag of the response of vegetation to water availability during flash droughts estimated by the cross-spectral analysis over North China in 2001–2020 was 5.9 days, which is shorter than the results measured by the widely used response time index (26.5 days). The main difference between the phase lag from the cross-spectral analysis method and the response time from the response time index method lies in the fundamental processes behind the definitions of the vegetation response in the two methods, i.e., a subtle and dynamic fluctuation signature in the response signal (vegetation-based drought index) that correlates with the fluctuation in the forcing signal (ET-based drought index) versus an irreversible impact indicated by a negative NDVI anomaly. The time lag of the response of vegetation to flash droughts varied with vegetation types and irrigation conditions. The average time lag for rainfed cropland, irrigated cropland, grassland, and forest in North China was 5.4, 5.8, 6.1, and 6.9 days, respectively. Forests have a longer response time to flash droughts than grasses and crops due to their deeper root systems, and irrigation can mitigate the impacts of flash droughts. Our method, based on cross-spectral analysis and the ET-based drought index, is innovative and can provide an earlier warning of impending drought impacts, rather than waiting for the irreversible impacts to occur. The information detected at an earlier stage of flash droughts can help decision makers in developing more effective and timely strategies to mitigate the impact of flash droughts on ecosystems.

Funder

National Natural Science Foundation of China

the Open Research Program of the International Research Center of Big Data for Sustainable Development Goals

the Chinese Academy of Sciences President’s International Fellowship Initiative

the MOST High Level Foreign Expert Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3