Variability and trends in surface solar spectral ultraviolet irradiance in Italy: on the influence of geopotential height and lower-stratospheric ozone

Author:

Fountoulakis IliasORCID,Diémoz HenriORCID,Siani Anna MariaORCID,di Sarra Alcide,Meloni Daniela,Sferlazzo Damiano M.

Abstract

Abstract. The short- and long-term variability of the surface spectral solar ultraviolet (UV) irradiance is investigated across Italy using high-quality ground-based measurements from three locations: Aosta (45.7∘ N, 7.4∘ E, 570 m a.s.l.), Rome (41.9∘ N, 12.5∘ E, 15 75 m a.s.l.), and Lampedusa (35.5∘ N, 12.6∘ E, 50 m a.s.l.). The three sites are characterized by different environmental conditions and represent almost the full latitudinal extent of the Italian territory. Data of two periods were analysed: 2006–2020 (all sites) and 1996–2020 (Rome only). The main objective of this study is to quantify the effect of the geopotential height (GPH) at 250 hPa on total ozone, and spectral irradiance at 307.5 and 324 nm. We first show that monthly anomalies in GPH, total ozone, and spectral irradiances are correlated amongst the three sites, suggesting that Italy is often affected by the same synoptical weather systems. We further find statistically significant anticorrelations between GPH and monthly anomalies in total ozone for all stations and months. Conversely, we identify positive correlations between GPH and monthly anomalies in spectral irradiance at 307.5 nm for most months. The influence of GPH on short-term variability also hold for long-term trends. For example, long-term changes in total ozone over the period 2006–2020 were associated with changes in GPH for all stations. This suggests that observed negative trends in total ozone were mainly driven by changes in lower-stratospheric ozone as upper-stratospheric ozone was increasing over this period. For several months of the year, positive trends in UV irradiance were observed, and we found that these trends were predominantly caused by changes in clouds and/or aerosols instead of total ozone. For the longer period of 1996–2020, a statistically significant annualized decrease in total ozone of ∼ 0.1 % per year was identified for Rome and could subsequently be attributed to decreasing lower-stratospheric ozone. While positive trends in spectral irradiance at 307.5 nm were observed for several months of this extended period, the negative trend in total ozone did not lead to a positive trend in the spectral irradiance at 307.5 nm in the deseasonalized data. Our study provides evidence that dynamical processes taking place in the troposphere lead to significant variability in total ozone and surface solar UV irradiance.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference95 articles.

1. AIRS: Aqua/AIRS L3 Monthly Standard Physical Retrieval (AIRS-only) 1 degree ∘ 1 degree V7.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/UBENJB9D3T2H, 2019. a

2. Bais, A. F., Zerefos, C. S., Meleti, C., Ziomas, I. C., and Tourpali, K.: Spectral measurements of solar UVB radiation and its relations to total ozone, SO2, and clouds, J. Geophys. Res.-Atmos., 98, 5199–5204, https://doi.org/10.1029/92JD02904, 1993. a

3. Bais, A. F., Gardiner, B. G., Slaper, H., Blumthaler, M., Bernhard, G., McKenzie, R., Webb, A. R., Seckmeyer, G., Kjeldstad, B., Koskela, T., Kirsch, P. J., Gröbner, J., Kerr, J. B., Kazadzis, S., Leszczynski, K., Wardle, D., Josefsson, W., Brogniez, C., Gillotay, D., Reinen, H., Weihs, P., Svenoe, T., Eriksen, P., Kuik, F., and Redondas, A.: SUSPEN intercomparison of ultraviolet spectroradiometers, J. Geophys. Res.-Atmos., 106, 12509–12525, https://doi.org/10.1029/2000JD900561, 2001. a

4. Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., and Rozanov, E. V.: Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, 2018. a

5. Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., and Peter, T.: Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability, Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, 2019. a, b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3