Filling data gaps in long-term solar UV monitoring by statistical imputation methods

Author:

Heinzl FelixORCID,Lorenz Sebastian,Scholz-Kreisel Peter,Weiskopf Daniela

Abstract

AbstractKnowledge of long-term time trends of solar ultraviolet (UV) radiation on ground level is of high scientific interest. For this purpose, precise measurements over a long time are necessary. One of the challenges solar UV monitoring faces is the permanent and gap-free data collection over several decades. Data gaps hamper the formation and comparison of monthly or annual means, and, in the worst case, lead to incorrect conclusions in further data evaluation and trend analysis of UV data. For estimating data to fill gaps in long-term UV data series (daily radiant exposure and highest daily irradiance), we developed three statistical imputation methods: a model-based imputation, considering actual local solar radiation conditions using predictors correlated to the local UV values in an empirical model; an average-based imputation based on a statistical approach of averaging available local UV measurement data without predictors; and a mixture of these two imputation methods. A detailed validation demonstrates the superiority of the model-based imputation method. The combined method can be considered the best one in practice. Furthermore, it has been shown that the model-based imputation method can be used as an useful tool to identify systematic errors at and between calibration steps in long-term erythemal UV data series.

Funder

Bundesamt für Strahlenschutz

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Lucas, R. M., Yazar, S., Young, A. R., Norval, M., Gruijl, F. R., Takizawa, Y., Rhodes, L. E., Sinclair, C. A., & Neale, R. E. (2019). Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical & Photobiological Sciences, 18, 641–680. https://doi.org/10.1039/C8PP90060D

2. Barnes, P., Williamson, C., Lucas, R., Robinson, S., Madronich, S., Paul, N., Bornman, J., Bais, A., Sulzberger, B., Wilson, S., Andrady, A., McKenzie, R., Neale, P., Austin, A., Bernhard, G., Solomon, K., Neale, R., Young, P., Norval, M., … Zepp, R. (2019). Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability, 2(7), 569–579. https://doi.org/10.1038/s41893-019-0314-2

3. Bornman, J. F., Paul, N., Shao, M., & Solomon, K. R. (2019). Environmental effects and interactions of stratospheric ozone depletion, UV radiation, and climate change: 2018 assessment. Photochemical & Photobiological Sciences, 18, 601. https://doi.org/10.1039/c8pp90066c

4. UNEP: Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and Interactions with Climate Change: 2022 Assessment Report of the Environmental Effects Assessment Panel. UNEP, Nairobi (2023)

5. Schmalwieser, A., Gröbner, J., Klotz, B., Blumthaler, M., Backer, H., Bolsée, D., Werner, R., Tomsic, D., Metelka, L., Eriksen, P., Jepsen, N., Aun, M., Heikkilä, A., Duprat, T., Sandmann, H., Weiss, T., Bais, A., Toth, Z., Siani, A., & O’Hagan, J. (2017). UV index monitoring in Europe. Photochemical & Photobiological Sciences, 16, 1349–1370. https://doi.org/10.1039/C7PP00178A

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3