Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon

Author:

Henkes Alice,Fisch Gilberto,Machado Luiz A. T.ORCID,Chaboureau Jean-PierreORCID

Abstract

Abstract. Observations of the boundary layer (BL) processes are analyzed statistically for dry seasons of 2 years and in detail, as case studies, for 4 shallow convective days (ShCu) and 4 shallow-to-deep convective days (ShDeep) using a suite of ground-based measurements from the Observation and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) Experiment. The BL stages in ShDeep days, from the nighttime to the cloudy mixing layer stage, are then described in comparison with ShCu days. Atmospheric thermodynamics and dynamics, environmental profiles, and surface turbulent fluxes were employed to compare these two distinct situations for each stage of the BL evolution. Particular attention is given to the morning transition stage, in which the BL changes from stable to unstable conditions in the early morning hours. Results show that the decrease in time duration of the morning transition on ShDeep days is associated with high humidity and well-established vertical wind shear patterns. Higher humidity since nighttime not only contributes to lowering the cloud base during the rapid growth of the BL but also contributes to the balance between radiative cooling and turbulent mixing during nighttime, resulting in higher sensible heat flux in the early morning. The sensible heat flux promotes rapid growth of the well-mixed layer, thus favoring the deeper BL starting from around 08:00 LST (UTC−4 h). Under these conditions, the time duration of morning transition is used to promote convection, having an important effect on the convective BL strength and leading to the formation of shallow cumulus clouds and their subsequent evolution into deep convective clouds. Statistical analysis was used to validate the conceptual model obtained from the case studies. Despite the case-to-case variability, the statistical analyses of the processes in the BL show that the described processes are very representative of cloud evolution during the dry season.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference46 articles.

1. ARM (Atmospheric Radiation Measurement user facility): Boundary-layer height data with CEIL (CEILPBLHT), updated hourly, 2014-01-01 to 2015-11-30, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil, AMF1 (M1), compiled by: Morris, V. and Shi, Y., ARM Data Center [data set], https://doi.org/10.5439/1095593, last access: 24 July 2020, 2014a. a

2. ARM (Atmospheric Radiation Measurement user facility): Eddy Correlation Flux Measurement System (30ECOR), updated hourly, 2014-04-03 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil, AMF1 (M1), compiled by: Sullivan, R., Cook, D., and Keeler, E., ARM Data Center [data set], https://doi.org/10.5439/1025039, last access: 24 July 2020, 2014b. a

3. ARM (Atmospheric Radiation Measurement user facility): Radiative Flux Analysis (RADFLUX1LONG), updated hourly, 2013-12-23 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Long, C., Gaustad, K., and Riihimaki, L., ARM Data Center [data set], last access: 4 April 2019, https://doi.org/10.5439/1157585, 2014c. a

4. ARM (Atmospheric Radiation Measurement): Surface Energy Balance System (SEBS), 2014-01-01 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Sullivan, R., Cook, D., and Keeler, E., ARM Data Center [data set], last access: 14 November 2020, https://doi.org/10.5439/1025274, 2014d. a

5. ARM (Atmospheric Radiation Measurement user facility): Mini Sound Detection and Ranging (SODAR), updated hourly, 2014-02-18 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; MAOS (S1), compiled by: Coulter, R., Muradyan, P., and Martin, T., ARM Data Center [data set], last access: 20 October 2020, https://doi.org/10.5439/1150265, 2014e. a

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3