Studying the Impacts of Meteorological Factors on Distribution of Cloud Horizontal Scales Based on Active Satellite

Author:

Zhang Lijie1ORCID,Li Jiming1ORCID,Li Jia1,Li Ruixue1,Zhang Weiyuan1,Lei Miao1ORCID,Lv Qiaoyi2,Jian Bida3ORCID

Affiliation:

1. Key Laboratory for Semi‐Arid Climate Change of the Ministry of Education College of Atmospheric Sciences Lanzhou University Lanzhou China

2. Xiamen Key Laboratory of Straits Meteorology Xiamen Meteorological Bureau Xiamen China

3. College of Earth and Environmental Sciences Lanzhou University Lanzhou China

Abstract

AbstractAs a significant macrophysical property, cloud horizontal scales play a role in cloud radiation, precipitation and vertical cloud overlap. Until now, however, the mechanisms behind the variations in cloud scale distribution have received far less attention. This study utilizes active satellite data from 2007 to 2016 to investigate the spatiotemporal distribution of cloud horizontal scales, and explains the variations through two meteorological factors: wind shear and atmospheric stability. Cloud scales exhibit a distinct power‐law behavior when scale break is not considered, and the power‐law exponent β is a characteristic measure of cloud scale distribution. A smaller power‐law exponent β indicates a higher frequency of large clouds. During boreal summer season, the amount of large clouds is extremely large south of the 40°S but rather small between 10°S and 20°S. As wind shear decreases or atmospheric stability increases, more large clouds occur globally. The underlying mechanisms might be associated with cloud entrainment which can be promoted by wind shear but inhibited by atmospheric stability. However, our analysis of the impacts of these two factors on cloud scale distribution across different regions and heights reveals that both wind shear and atmospheric stability play dual roles on the values of the exponent β. The potential physical mechanisms, including the effects of precipitation, are further discussed. It is observed that precipitation also exerts a dual impact on the values of the exponent β. These findings underscore the significance of considering the impacts of meteorological factors on cloud scale distribution in numerical weather prediction models.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3