Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and meteorology

Author:

Dufour GaëlleORCID,Hauglustaine Didier,Zhang YunjiangORCID,Eremenko Maxim,Cohen Yann,Gaudel Audrey,Siour Guillaume,Lachatre Mathieu,Bense Axel,Bessagnet Bertrand,Cuesta JuanORCID,Ziemke Jerry,Thouret Valérie,Zheng BoORCID

Abstract

Abstract. Free tropospheric ozone (O3) trends in the Central East China (CEC) and export regions are investigated for 2008–2017 using the IASI (Infrared Atmospheric Sounding Interferometer) O3 observations and the LMDZ-OR-INCA model simulations, including the most recent Chinese emission inventory. The observed and modelled trends in the CEC region are −0.07 ± 0.02 and −0.08 ± 0.02 DU yr−1, respectively, for the lower free troposphere (3–6 km column) and −0.05 ± 0.02 and −0.06 ± 0.02 DU yr−1, respectively, for the upper free troposphere (6–9 km column). The statistical p value is smaller to 0.01 for all the derived trends. A good agreement between the observations and the model is also observed in the region, including the Korean Peninsula and Japan and corresponding to the region of pollution export from China. Based on sensitivity studies conducted with the model, we evaluate, at 60 % and 52 %, the contribution of the Chinese anthropogenic emissions to the trend in the lower and upper free troposphere, respectively. The second main contribution to the trend is the meteorological variability (34 % and 50 %, respectively). These results suggest that the reduction in NOx anthropogenic emissions that has occurred since 2013 in China led to a decrease in ozone in the Chinese free troposphere, contrary to the increase in ozone at the surface. We designed some tests to compare the trends derived by the IASI observations and the model to independent measurements, such as the In-service Aircraft for a Global Observing System (IAGOS) or other satellite measurements (Ozone Monitoring Instrument (OMI)/Microwave Limb Sounder (MLS)). These comparisons do not confirm the O3 decrease and stress the difficulty in analysing short-term trends using multiple data sets with various sampling and the risk of overinterpreting the results.

Funder

Agence Nationale de la Recherche

Centre National d’Etudes Spatiales

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3