Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements

Author:

Boynard Anne,Hurtmans Daniel,Garane KaterinaORCID,Goutail FlorenceORCID,Hadji-Lazaro Juliette,Koukouli Maria ElissavetORCID,Wespes Catherine,Vigouroux Corinne,Keppens ArnoORCID,Pommereau Jean-PierreORCID,Pazmino Andrea,Balis DimitrisORCID,Loyola DiegoORCID,Valks Pieter,Sussmann Ralf,Smale DanORCID,Coheur Pierre-François,Clerbaux Cathy

Abstract

Abstract. This paper assesses the quality of IASI (Infrared Atmospheric Sounding Interferometer)/Metop-A (IASI-A) and IASI/Metop-B (IASI-B) ozone (O3) products (total and partial O3 columns) retrieved with the Fast Optimal Retrievals on Layers for IASI Ozone (FORLI-O3; v20151001) software for 9 years (2008–July 2017) through an extensive intercomparison and validation exercise using independent observations (satellite, ground-based and ozonesonde). Compared with the previous version of FORLI-O3 (v20140922), several improvements have been introduced in FORLI-O3 v20151001, including absorbance look-up tables recalculated to cover a larger spectral range, with additional numerical corrections. This leads to a change of ∼4 % in the total ozone column (TOC) product, which is mainly associated with a decrease in the retrieved O3 concentration in the middle stratosphere (above 30 hPa/25 km). IASI-A and IASI-B TOCs are consistent, with a global mean difference of less than 0.3 % for both daytime and nighttime measurements; IASI-A is slightly higher than IASI-B. A global difference of less than 2.4 % is found for the tropospheric (TROPO) O3 column product (IASI-A is lower than IASI-B), which is partly due to a temporary issue related to the IASI-A viewing angle in 2015. Our validation shows that IASI-A and IASI-B TOCs are consistent with GOME-2 (Global Ozone Monitoring Experiment-2), Dobson, Brewer, SAOZ (Système d'Analyse par Observation Zénithale) and FTIR (Fourier transform infrared) TOCs, with global mean differences in the range of 0.1 %–2 % depending on the instruments compared. The worst agreement with UV–vis retrieved TOC (satellite and ground) is found at the southern high latitudes. The IASI-A and ground-based TOC comparison for the period from 2008 to July 2017 shows the long-term stability of IASI-A, with insignificant or small negative drifts of 1 %–3 % decade−1. The comparison results of IASI-A and IASI-B against smoothed FTIR and ozonesonde partial O3 columns vary with altitude and latitude, with the maximum standard deviation being seen for the 300–150 hPa column (20 %–40 %) due to strong ozone variability and large total retrievals errors. Compared with ozonesonde data, the IASI-A and IASI-B O3 TROPO column (defined as the column between the surface and 300 hPa) is positively biased in the high latitudes (4 %–5 %) and negatively biased in the midlatitudes and tropics (11 %–13 % and 16 %–19 %, respectively). The IASI-A-to-ozonesonde TROPO comparison for the period from 2008 to 2016 shows a significant negative drift in the Northern Hemisphere of -8.6±3.4 % decade−1, which is also found in the IASI-A-to-FTIR TROPO comparison. When considering the period from 2011 to 2016, the drift value for the TROPO column decreases and becomes statistically insignificant. The observed negative drifts of the IASI-A TROPO O3 product (8 %–16 % decade−1) over the 2008–2017 period might be taken into consideration when deriving trends from this product and this time period.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3