Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTY<sub>SOC</sub>v2.0 and PARTY<sub>SOC</sub>v2.0<sub>EU</sub>)

Author:

Cécillon LauricORCID,Baudin FrançoisORCID,Chenu Claire,Christensen Bent T.,Franko UweORCID,Houot Sabine,Kanari Eva,Kätterer ThomasORCID,Merbach Ines,van Oort Folkert,Poeplau Christopher,Quezada Juan Carlos,Savignac Florence,Soucémarianadin Laure N.,Barré PierreORCID

Abstract

Abstract. Partitioning soil organic carbon (SOC) into two kinetically different fractions that are stable or active on a century scale is key for an improved monitoring of soil health and for more accurate models of the carbon cycle. However, all existing SOC fractionation methods isolate SOC fractions that are mixtures of centennially stable and active SOC. If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics that are quickly (ca. 1 h per sample) measurable using Rock-Eval® thermal analysis. An alternative would thus be to (1) train a machine-learning model on the Rock-Eval® thermal analysis data for soil samples from long-term experiments for which the size of the centennially stable and active SOC fractions can be estimated and (2) apply this model to the Rock-Eval® data for unknown soils to partition SOC into its centennially stable and active fractions. Here, we significantly extend the validity range of a previously published machine-learning model (Cécillon et al., 2018) that is built upon this strategy. The second version of this model, which we propose to name PARTYSOC, uses six European long-term agricultural sites including a bare fallow treatment and one South American vegetation change (C4 to C3 plants) site as reference sites. The European version of the model (PARTYSOCv2.0EU) predicts the proportion of the centennially stable SOC fraction with a root mean square error of 0.15 (relative root mean square error of 0.27) at six independent validation sites. More specifically, our results show that PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at its northwestern European validation sites on Cambisols and Luvisols, which are the two dominant soil groups in this region. We plan future developments of the PARTYSOC global model using additional reference soils developed under diverse pedoclimates and ecosystems to further expand its domain of application while reducing its prediction error.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3