Towards an ecosystem capacity to stabilise organic carbon in soils

Author:

Poeplau Christopher1ORCID,Dechow Rene1,Begill Neha1ORCID,Don Axel1ORCID

Affiliation:

1. Thünen Institute of Climate‐Smart Agriculture Braunschweig Germany

Abstract

AbstractSoil organic carbon (SOC) accrual, and particularly the formation of fine fraction carbon (OCfine), has a large potential to act as sink for atmospheric CO2. For reliable estimates of this potential and efficient policy advice, the major limiting factors for OCfine accrual need to be understood. The upper boundary of the correlation between fine mineral particles (silt + clay) and OCfine is widely used to estimate the maximum mineralogical capacity of soils to store OCfine, suggesting that mineral surfaces get C saturated. Using a dataset covering the temperate zone and partly other climates on OCfine contents and a SOC turnover model, we provide two independent lines of evidence, that this empirical upper boundary does not indicate C saturation. Firstly, the C loading of the silt + clay fraction was found to strongly exceed previous saturation estimates in coarse‐textured soils, which raises the question of why this is not observed in fine‐textured soils. Secondly, a subsequent modelling exercise revealed, that for 74% of all investigated soils, local net primary production (NPP) would not be sufficient to reach a C loading of 80 g C kg−1 silt + clay, which was previously assumed to be a general C saturation point. The proportion of soils with potentially enough NPP to reach that point decreased strongly with increasing silt + clay content. High C loadings can thus hardly be reached in more fine‐textured soils, even if all NPP would be available as C input. As a pragmatic approach, we introduced texture‐dependent, empirical maximum C loadings of the fine fraction, that decreased from 160 g kg−1 in coarse to 75 g kg−1 in most fine‐textured soils. We conclude that OCfine accrual in soils is mainly limited by C inputs and is strongly modulated by texture, mineralogy, climate and other site properties, which could be formulated as an ecosystem capacity to stabilise SOC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3