Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra

Author:

Baldock J. A.,Hawke B.,Sanderman J.,Macdonald L. M.

Abstract

Quantifying the content and composition of soil carbon in the laboratory is time-consuming, requires specialised equipment and is therefore expensive. Rapid, simple and low-cost accurate methods of analysis are required to support current interests in carbon accounting. This study was completed to develop national and state-based models capable of predicting soil carbon content and composition by coupling diffuse reflectance mid-infrared (MIR) spectra with partial least-squares regression (PLSR) analyses. Total, organic and inorganic carbon contents were determined and MIR spectra acquired for 20 495 soil samples collected from 4526 locations from soil depths to 1 m within Australia’s agricultural regions. However, all subsequent MIR/PLSR models were developed using soils only collected from the 0–10, 10–20 and 20–30 cm depth layers. The extent of grinding applied to air-dried soil samples was found to be an important determinant of the variability in acquired MIR spectra. After standardisation of the grinding time, national MIR/PLSR models were developed using an independent test-set validation approach to predict the square-root transformed contents of total, organic and inorganic carbon and total nitrogen. Laboratory fractionation of soil organic carbon into particulate, humus and resistant forms was completed on 312 soil samples. Reliable national MIR/PLSR models were developed using cross-validation to predict the contents of these soil organic carbon fractions; however, further work is required to enhance the representation of soils with significant contents of inorganic carbon. Regional MIR/PLSR models developed for total, organic and inorganic carbon and total nitrogen contents were found to produce more reliable and accurate predictions than the national models. The MIR/PLSR approach offers a more rapid and more cost effective method, relative to traditional laboratory methods, to derive estimates of the content and composition of soil carbon and total nitrogen content provided that the soils are well represented by the calibration samples used to build the predictive models.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3