Future snow changes and their impact on the upstream runoff in Salween

Author:

Chai Chenhao,Wang LeiORCID,Chen DeliangORCID,Zhou JingORCID,Liu Hu,Zhang Jingtian,Wang YuanweiORCID,Chen Tao,Liu Ruishun

Abstract

Abstract. Understanding the hydrological processes related to snow in global mountainous regions under climate change is necessary for achieving regional water and food security (e.g., the United Nation's Sustainable Development Goals 2 and 6). However, the impacts of future snow changes on the hydrological processes in the high mountains of the “Third Pole” are still largely unclear. In this study, we aimed to project future snow changes and their impacts on hydrology in the upstream region of the Salween River (USR) under two shared socioeconomic pathway (SSP) scenarios (SSP126 and SSP585) using a physically based cryosphere–hydrology model. We found that the climate would become warmer (0.2 ∘C per decade under SSP126 and 0.7 ∘C per decade under SSP585) and wetter (5 mm per decade under SPP126 and 27.8 mm per decade under SSP585) in the USR in the future under these two SSPs. In this context, the snowfall, snow cover, snow water equivalent, and snowmelt runoff are projected to exhibit significant decreasing trends during 1995–2100, and the decreases are projected to be most prominent in summer and autumn. The future (2021–2100) snowmelt runoff is projected to significantly increase in spring compared with the reference period (1995–2014), which would benefit the availability of water resources in the growing season. The annual total runoff would significantly increase in all of the future periods due to increased rainfall, which would increase the availability of water resources within the basin, but the high peak flow that occurs in summer may cause rain flooding with short duration and high intensity. Compared with the reference period (the contribution of snowmelt runoff to the total runoff was determined to be 17.5 %), the rain- and snow-dominated pattern of runoff would shift to a rain-dominated pattern after the near term (2021–2040) under SSP585, whereas it would remain largely unchanged under SSP126. Climate change would mainly change the pattern of the snowmelt runoff, but it would not change the annual hydrograph pattern (dominated by increased rainfall). These findings improve our understanding of the responses of cryosphere–hydrological processes under climate change, providing valuable information for integrated water resource management, natural disaster prevention, and ecological environmental protection at the Third Pole.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3