MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment

Author:

Beck Hylke E.1,Wood Eric F.1,Pan Ming1,Fisher Colby K.1,Miralles Diego G.2,van Dijk Albert I. J. M.3,McVicar Tim R.4,Adler Robert F.5

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

2. Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

3. Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia

4. CSIRO Land and Water, Canberra, Australian Capital Territory, and Australian Research Council Centre of Excellence for Climate System Science, Sydney, New South Wales, Australia

5. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Abstract

AbstractWe present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global coverage (all land and oceans); ii) high spatial (0.1°) and temporal (3 hourly) resolution; iii) optimal merging of P estimates based on gauges [WorldClim, Global Historical Climatology Network-Daily (GHCN-D), Global Summary of the Day (GSOD), Global Precipitation Climatology Centre (GPCC), and others], satellites [Climate Prediction Center morphing technique (CMORPH), Gridded Satellite (GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT)], and reanalyses [European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55)]; iv) distributional bias corrections, mainly to improve the P frequency; v) correction of systematic terrestrial P biases using river discharge Q observations from 13,762 stations across the globe; vi) incorporation of daily observations from 76,747 gauges worldwide; and vii) correction for regional differences in gauge reporting times. MSWEP V2 compares substantially better with Stage IV gauge–radar P data than other state-of-the-art P datasets for the United States, demonstrating the effectiveness of the MSWEP V2 methodology. Global comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns in mean, magnitude, and frequency. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 955, 781, and 1,025 mm yr−1, respectively. Other P datasets consistently underestimate P amounts in mountainous regions. Using MSWEP V2, P was estimated to occur 15.5%, 12.3%, and 16.9% of the time on average for the global, land, and ocean domains, respectively. MSWEP V2 provides unique opportunities to explore spatiotemporal variations in P, improve our understanding of hydrological processes and their parameterization, and enhance hydrological model performance.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3