Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements

Author:

Xu Hui,Guo JianpingORCID,Tong Bing,Zhang Jinqiang,Chen TianmengORCID,Guo Xiaoran,Zhang Jian,Chen Wenqing

Abstract

Abstract. Cloud remains one of the largest uncertainties in weather and climate research due to the lack of fine-resolution observations of cloud vertical structure (CVS) on a large scale. In this study, near-global CVS is characterized by high-vertical-resolution twice-daily radiosonde observations from 374 stations over land, which are distributed in Europe, North America, East Asia, Australia, the Pacific Ocean, and Antarctica. To this end, we initially develop a novel method to determine CVS, by combining both the vertical gradients of air temperature and relative humidity (RH) and the altitude-dependent thresholds of RH. It is found that the cloud base heights (CBHs) from radiosondes have a higher correlation coefficient (R= 0.91) with the CBHs from a millimeter-wave cloud radar than those from the ERA5 reanalysis (R= 0.49). Overall, cloudy skies occur 65.3 % (69.5 %) of the time, of which 55.4 % (53.8 %) are one-layer clouds at 00:00 (12:00) UTC. Most multi-layer clouds are two-layer clouds, accounting for 62.2 % (61.1 %) among multi-layer clouds at 00:00 (12:00) UTC. Geographically, one-layer clouds tend to occur over arid regions, whereas two-layer clouds do not show any clear spatial preference. The cloud bases and tops over arid regions are higher compared with humid regions albeit with smaller cloud thickness (CT). Clouds tend to have lower bases and thinner layer thicknesses as the number of cloud layer increases. The global-mean CT, CBH, and cloud top height (CTH) are 4.89 ± 1.36 (5.37 ± 1.58), 3.15 ± 1.15 (3.07 ± 1.06), and 8.04 ± 1.60 (8.44 ± 1.52) km above ground level (a.g.l.) at 00:00 (12:00) UTC, respectively. The occurrence frequency of clouds is bimodal, with lower peaks between 0.5 and 3 km a.g.l. and upper peaks between 6 and 10 km a.g.l. The CBH, CTH, and CT undergo almost the same seasonality; namely, their magnitudes in boreal summer are greater than in boreal winter. As expected, the occurrence frequencies of clouds exhibit pronounced diurnal cycles in different seasons. In boreal summer, clouds tend to form as the sun rises and the occurrence frequencies increase from morning to late afternoon, with the peak in the early afternoon at the altitude of 6–12 km a.g.l., while in boreal winter, clouds have peak occurrence frequencies in the morning. The relations between surface meteorological variables and moisture with CBH are investigated as well, showing that CBHs are generally more significantly correlated with 2 m relative humidity (RH2 m) and 2 m air temperature (T2 m) than with surface pressure and 10 m wind speed. Larger T2 m and smaller RH2 m always correspond to higher CBH. In most cases CBHs are negatively correlated to soil water content. The near-global CVS obtained from high-vertical-resolution radiosondes in this study can provide key data support for improving the accuracy of cloud radiative forcing simulation in climate models.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3