Observed Variability of Cloud Frequency and Cloud-Base Height within 3600 m above the Surface over the Contiguous United States

Author:

An Ning1,Wang Kaicun2,Zhou Chunlüe2,Pinker Rachel T.3

Affiliation:

1. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

3. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract The geographic and temporal variability of the surface–3600-m cloud frequency and cloud-base height over the contiguous United States for a 5-yr period (2008–12) and the interannual variations for a 16-yr period (2000–15) are described using information from the Automated Surface Observing System (ASOS) observations. Clouds were separated into four categories by the cloud amount reported by ASOS: few (FEW), scattered (SCT), broken (BKN), and overcast (OVC). The geographic distributions and seasonal and diurnal cycles of the four categories of surface–3600-m cloud frequency have different patterns. Cloud frequency of FEW, SCT, and BKN peaks just after noon, whereas the frequency of OVC peaks in the early morning. However, the geographic distributions and seasonal and diurnal cycles of the four categories of the surface–3600-m cloud-base height are similar. The diurnal cycles of the cloud-base height within the surface–3600-m level present a minimum in the morning and peak in the late afternoon or early evening. Cloud frequency and cloud-base height within this range are closely related to surface air temperature and humidity conditions. From 2000 to 2015, the cloud frequency in the contiguous United States showed a positive trend of 0.28% yr−1 while the cloud-base height showed a negative trend of −4 m yr−1 for the surface–3600-m level, accompanied with a positive trend of precipitation days (0.14 days yr−1). Moreover, the increase of cloud frequency and the decrease of cloud-base height were most obvious in winter in the eastern half of the contiguous United States.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3