Impact of nucleation on global CCN

Author:

Merikanto J.,Spracklen D. V.,Mann G. W.,Pickering S. J.,Carslaw K. S.

Abstract

Abstract. Cloud condensation nuclei (CCN) are derived from particles emitted directly into the atmosphere (primary emissions) or from the growth of nanometer-sized particles nucleated in the atmosphere. It is important to separate these two sources because they respond in different ways to gas and particle emission control strategies and environmental changes. Here, we use a global aerosol microphysics model to quantify the contribution of primary and nucleated particles to global CCN. The model considers primary emissions of sea spray, sulfate and carbonaceous particles, and nucleation processes appropriate for the free troposphere and boundary layer. We estimate that 45% of global low-level cloud CCN at 0.2% supersaturation are secondary aerosol derived from nucleation (ranging between 31–49% taking into account uncertainties in primary emissions and nucleation rates), with the remainder from primary emissions. The model suggests that 35% of CCN (0.2%) in global low-level clouds were created in the free and upper troposphere. In the marine boundary layer 55% of CCN (0.2%) are from nucleation, with 45% entrained from the free troposphere and 10% nucleated directly in the boundary layer. Combinations of model runs show that primary and nucleated CCN are non-linearly coupled. In particular, boundary layer nucleated CCN are strongly suppressed by both primary emissions and entrainment of particles nucleated in the free troposphere. Elimination of all primary emissions reduces global CCN (0.2%) by only 20% and elimination of upper tropospheric nucleation reduces CCN (0.2%) by only 12% because of the increased contribution from boundary layer nucleation.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 690 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3