The effects of airmass history on new particle formation in the free troposphere: case studies

Author:

Benson D. R.,Campos T. L.,Rogers D. C.,Jensen J., ,

Abstract

Abstract. Recent aircraft studies showed that new particle formation (NPF) is very active in the free troposphere. And, these observations lead to a new question: when does NPF not occur? Here, we provide case studies to show how different meteorological parameters affect NPF in the upper troposphere, using the aerosol size distributions measured at latitudes from 18° N–52° N and altitudes up to 14 km during the NSF/NCAR GV Progressive Science Missions. About 95% of the total samples showed the NPF feature with median number concentrations of particles with diameters from 4 to 9 nm (N4–9), 288±199 cm−3, and the total particle number concentrations with diameters from 4 to 2000 nm (N4–2000), 500±259 cm−3. Surface areas were in general very low in the free troposphere, 1.58±0.87 μm2 cm−3, which in part explains the high frequency of NPF measured in this region, but there was no distinctive difference in surface area for the NPF and non-NPF cases. Our case studies show that rather airmass history is more important for nucleation in this region. Weak- or non-events did not display uplifting of airmasses. On the other hand, strong NPF events were usually associated with uplifting of airmasses, although there were also NPF cases in which uplift did not occur, consistent with the previous observations (Young et al., 2007). NPF tends to easily occur in the free troposphere because of low surface areas and low temperatures (Carslaw and Kärcher, 2006), but because of the low aerosol precursors in this region, vertical motion (that can bring higher concentrations of aerosol precursors from low altitude source regions to higher altitudes) can play a critical role. Latitude dependence of new particles also shows higher particle concentrations in the midlatitude and subtropics tropopause region than in the tropics, consistent with Hermann et al. (2003).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference21 articles.

1. Brock, C. A., Schrörder, F., Kärcher, B., Petzold, A., Busen, R., and Fiebig, M.: Ultrafine particle size distributions measured in aircraft exhaust plumes, J. Geophys. Res., 105, 26 555–26 567, 2000.

2. Carslaw, K. S. and Kärcher, B.: Stratospheric aerosol processes, Chap 1, in: Stratospheric Processes and Their Role in Global Climate (SPARC), A Project of WMO/ICSU/IOC World Climate Research Program: Assessment of Stratospheric Aerosol Properties (ASAP), edited by: Thomason, and Peter, Th., SPARC Scientific Steering Group, February 2006, http://www.atmosp.physics.utoronto.ca/SPARC/ASAP%20V3c1.pdf, 2006.

3. de Reus, M., Ström, J., Kulmala, M., Pirjola, L., Lelieveld, J., Schiller, C., and Zöger, M.: Airborne aerosol measurements in the tropopause region and the dependence of NPF on preexisting number concentration, J. Geophys. Res., 103, 31 255–31 263, 1998.

4. de Reus, M., Ström, J., Hoor, R., Lelieveld, J., and Schiller, C.: Particle production in the lowermost stratosphere by convective lifting of the tropopause, J. Geophys. Res., 104, 23 935–23 940, 1999.

5. Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD, 2003.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3