New Particle Formation Events Can Reduce Cloud Droplets in Boundary Layer Clouds at the Continental Scale

Author:

Patoulias D.1ORCID,Florou K.1ORCID,Pandis S. N.12ORCID,Nenes A.13ORCID

Affiliation:

1. Institute for Chemical Engineering Sciences Foundation for Research and Technology Hellas Patras Greece

2. Department of Chemical Engineering University of Patras Patras Greece

3. School of Architecture, Civil & Environmental Engineering Ecole polytechnique fédérale de Lausanne Lausanne Switzerland

Abstract

AbstractNew particle formation (NPF) substantially contributes to global cloud condensation nuclei (CCN), and their climate impacts. Individual NPF events are also thought to increase local CCN, cloud droplet number (CDN), and cloud albedo. High resolution simulations however go against the latter, showing that radiatively important stratiform clouds can experience a systematic and substantial decrease in CDN during and after NPF events. CDN drops because particles too small to act as CCN uptake condensable material, and stunt the growth of particles that would otherwise form droplets. Convective clouds however experience modest increases in CDN—consistent with established views on the NPF‐cloud link. Together, these results reshape our conceptual understanding of NPF impacts on clouds, as the newly discovered duality of responses would drive cloud systems in a fundamentally different manner than thought.

Funder

H2020 European Research Council

Horizon 2020 Framework Programme

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3