Source sector and region contributions to black carbon and PM<sub>2.5</sub> in the Arctic

Author:

Sobhani Negin,Kulkarni Sarika,Carmichael Gregory R.

Abstract

Abstract. The impacts of black carbon (BC) and particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) emissions from different source sectors (e.g., transportation, power, industry, residential, and biomass burning) and geographic source regions (e.g., Europe, North America, China, Russia, central Asia, south Asia, and the Middle East) to Arctic BC and PM2.5 concentrations are investigated through a series of annual sensitivity simulations using the Weather Research and Forecasting – sulfur transport and deposition model (WRF-STEM) modeling framework. The simulations are validated using observations at two Arctic sites (Alert and Barrow Atmospheric Baseline Observatory), the Interagency Monitoring of Protected Visual Environments (IMPROVE) surface sites over the US, and aircraft observations over the Arctic during spring and summer 2008. Emissions from power, industrial, and biomass burning sectors are found to be the main contributors to the Arctic PM2.5 surface concentration, with contributions of ∼ 30 %, ∼ 25 %, and ∼ 20 %, respectively. In contrast, the residential and transportation sectors are identified as the major contributors to Arctic BC, with contributions of ∼ 38 % and ∼ 30 %. Anthropogenic emissions are the most dominant contributors (∼ 88 %) to the BC surface concentration over the Arctic annually; however, the contribution from biomass burning is significant over the summer (up to ∼ 50 %). Among all geographical regions, Europe and China have the highest contributions to the BC surface concentrations, with contributions of ∼ 46 % and ∼ 25 %, respectively. Industrial and power emissions had the highest contributions to the Arctic sulfate (SO4) surface concentration, with annual contributions of ∼ 43 % and ∼ 41 %, respectively. Further sensitivity runs show that, among various economic sectors of all geographic regions, European and Chinese residential sectors contribute to ∼ 25 % and ∼ 14 % of the Arctic average surface BC concentration. Emissions from the Chinese industry sector and European power sector contribute ∼ 12 % and ∼ 18 % of the Arctic surface sulfate concentration. For Arctic PM2.5, the anthropogenic emissions contribute > ∼ 75 % at the surface annually, with contributions of ∼ 25 % from Europe and ∼ 20 % from China; however, the contributions of biomass burning emissions are significant in particular during spring and summer. The contributions of each geographical region to the Arctic PM2.5 and BC vary significantly with altitude. The simulations show that the BC from China is transported to the Arctic in the midtroposphere, while BC from European emission sources are transported near the surface under 5 km, especially during winter.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference111 articles.

1. Abdi-Oskouei, M., Pfister, G., Flocke, F., Sobhani, N., Saide, P., Fried, A., Richter, D., Weibring, P., Walega, J., and Carmichael, G.: Impacts of physical parameterization on prediction of ethane concentrations for oil and gas emissions in WRF-Chem, Atmos. Chem. Phys., 18, 16863–16883, https://doi.org/10.5194/acp-18-16863-2018, 2018.

2. Adhikary, B., Carmichael, G. R., Tang, Y., Leung, L. R., Qian, Y., Schauer, J. J., Stone, E. A., Ramanathan, V., and Ramana, M. V: Characterization of the seasonal cycle of south Asian aerosols: A regional-scale modeling analysis, J. Geophys. Res., 112, D22S22, https://doi.org/10.1029/2006jd008143, 2007.

3. Adhikary, B., Carmichael, G. R., Kulkarni, S., Wei, C., Tang, Y., D'Allura, A., Mena-Carrasco, M., Streets, D. G., Zhang, Q., Pierce, R. B., Al-Saadi, J. A., Emmons, L. K., Pfister, G. G., Avery, M. A., Barrick, J. D., Blake, D. R., Brune, W. H., Cohen, R. C., Dibb, J. E., Fried, A., Heikes, B. G., Huey, L. G., O'Sullivan, D. W., Sachse, G. W., Shetter, R. E., Singh, H. B., Campos, T. L., Cantrell, C. A., Flocke, F. M., Dunlea, E. J., Jiménez, J. L., Weinheimer, A. J., Crounse, J. D., Wennberg, P. O., Schauer, J. J., Stone, E. A., Jaffé, D. A., and Reidmiller, D. R.: A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091–2115, https://doi.org/10.5194/acp-10-2091-2010, 2010.

4. AMAP: Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost, Oslo, Norway, xi, 97&thinsp;pp., 2011a.

5. AMAP: The Impact of Black Carbon on Arctic Climate, edited by: Quinn, P. K., Stohl, A., Arneth, A., Berntsen, T., Burkhart, J. F., Christensen, J., Flanner, M., Kupiainen, K., Lihavainen, H., Shepherd, M., Shevchenko, V., Skov, H., and Vestreng, V., in: Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 72&thinsp;pp., 2011b.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3