Large transboundary health impact of Arctic wildfire smoke

Author:

Silver BenORCID,Arnold Steve R.,Reddington Carly L.,Emmons Louisa K.ORCID,Conibear Luke

Abstract

AbstractRapid warming at high latitudes, particularly in Siberia, has led to large wildfires in recent years that cause widespread smoke plumes. These fires lead to substantial deterioration in summer air quality in the region, with a factor 4 increase in summer fine particulate matter (PM2.5) concentrations in parts of Siberia during 1998–2020. Exposure to PM2.5 is associated with increased risk of mortality due to cardiovascular and respiratory disease, and the atmospheric lifetime of PM2.5 means that it can be efficiently transported between regions and nations. We used the Community Earth System Model to quantify the fraction of PM2.5 attributed to high latitude wildfires that occur in the Arctic Council member states and estimated the attributable health impact locally and in neighbouring countries. During 2001–2020 we attribute ~21,000 excess deaths to Arctic Council wildfires on average each year, of which ~8000 occur in countries outside the Arctic Council. Our analysis shows that the health impact of Arctic wildfires decreased during 2001–2020, despite the increase of wildfire-sourced PM2.5, which we suggest is due to a northwards shift in the average latitude of Siberian wildfires, reducing their impact on more densely populated regions.

Funder

RCUK | Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3