Mesoscale fine structure of a tropopause fold over mountains

Author:

Woiwode Wolfgang,Dörnbrack AndreasORCID,Bramberger MartinaORCID,Friedl-Vallon FelixORCID,Haenel Florian,Höpfner MichaelORCID,Johansson SörenORCID,Kretschmer ErikORCID,Krisch IsabellORCID,Latzko Thomas,Oelhaf Hermann,Orphal Johannes,Preusse Peter,Sinnhuber Björn-MartinORCID,Ungermann JörnORCID

Abstract

Abstract. We report airborne remote-sensing observations of a tropopause fold during two crossings of the polar front jet over northern Italy on 12 January 2016. The GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) observations allowed for a simultaneous mapping of temperature, water vapour, and ozone. They revealed deep, dry, and ozone-rich intrusions into the troposphere. The mesoscale fine structures of dry filaments at the cyclonic shear side north of the jet and tongues of moist air entraining tropospheric air into the stratosphere along the anticyclonic shear side south of the jet were clearly resolved by GLORIA observations. Vertically propagating mountain waves with recorded temperature residuals exceeding ±3 K were detected above the Apennines. Their presence enhanced gradients of all variables locally in the vicinity of the tropopause. The combination of H2O−O3 correlations with potential temperature reveals an active mixing region and shows clear evidence of troposphere-to-stratosphere and stratosphere-to-troposphere exchange. High-resolution short-term deterministic forecasts of ECMWF's integrated forecast system (IFS) applying GLORIA's observational filter reproduce location, shape, and depth of the tropopause fold very well. The fine structure of the mixing region, however, cannot be reproduced even with the 9 km horizontal resolution of the IFS, used here. This case study demonstrates convincingly the capabilities of linear limb-imaging observations to resolve mesoscale fine structures in the upper troposphere and lower stratosphere, validates the high quality of the IFS data, and suggests that mountain wave perturbations have the potential to modulate exchange processes in the vicinity of tropopause folds.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3