Quantification and mitigation of the instrument effects and uncertainties of the airborne limb imaging FTIR GLORIA
-
Published:2022-04-25
Issue:8
Volume:15
Page:2503-2530
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Ungermann JörnORCID, Kleinert Anne, Maucher Guido, Bartolomé IreneORCID, Friedl-Vallon FelixORCID, Johansson SörenORCID, Krasauskas LukasORCID, Neubert TomORCID
Abstract
Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an infrared imaging FTS (Fourier transform spectrometer) with a 2-D infrared detector that is operated on two high-flying research aircraft. It has flown on eight campaigns and measured along more than 300 000 km of flight track. This paper details our instrument calibration and characterization efforts, which, in particular, almost exclusively leverage in-flight data. First, we present the framework of our new calibration scheme, which uses information from all three available calibration sources (two blackbodies and upward-pointing “deep space” measurements). Part of this scheme is a new algorithm for correcting the erratically changing nonlinearity of a subset of detector pixels and the identification of the remaining bad pixels. Using this new calibration, we derive a 1σ bound of 1 % on the
instrument gain error and a bound of 30 nW cm−2 sr−1 cm on
the instrument offset error. We show how we can examine the noise and
spectral accuracy for all measured atmospheric spectra and derive a
spectral accuracy of 5 ppm on average. All these errors are compliant with the initial instrument requirements. We also discuss, for the first time, the pointing system of the GLORIA
instrument. Combining laboratory calibration efforts with the
measurement of astronomical bodies during the flight, we can achieve a
pointing accuracy of 0.032∘, which corresponds to one detector pixel. The paper concludes with a brief study of how these newly characterized
instrument parameters affect temperature and ozone retrievals. We find
that the pointing uncertainty and, to a lesser extent, the instrument gain
uncertainty are the main contributors to the error in the result.
Funder
European Metrology Programme for Innovation and Research Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference53 articles.
1. Brault, J. W.: New approach to high-precision Fourier transform spectrometer design, Appl. Optics, 35, 2891–2896, https://doi.org/10.1364/AO.35.002891, 1996. a 2. Conway, T., Tans, P., Waterman, L., Thoning, K., Kitzis, D., Masarie, K., and Zhang, N.: Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network, J. Geophys. Res., 99, 22831–22855, https://doi.org/10.1029/94JD01951, 1994. a 3. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hòlm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a 4. de F. Forster, P. M. and Shine, K. P.: Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res., 102, 10841–10855, https://doi.org/10.1029/96JD03510, 1997. a 5. Dlugokencky, E.: Trends in Atmospheric Methane, National Oceanic and Atmospheric Administration (NOAA) [data set], http://gml.noaa.gov/ccgg/trends_ch4/, last access: 26 October 2020. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|