Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods

Author:

Charles Stephen P.ORCID,Wang Quan J.,Ahmad Mobin-ud-DinORCID,Hashmi Danial,Schepen Andrew,Podger Geoff,Robertson David E.ORCID

Abstract

Abstract. Timely and skilful seasonal streamflow forecasts are used by water managers in many regions of the world for seasonal water allocation outlooks for irrigators, reservoir operations, environmental flow management, water markets and drought response strategies. In Australia, the Bayesian joint probability (BJP) statistical approach has been deployed by the Australian Bureau of Meteorology to provide seasonal streamflow forecasts across the country since 2010. Here we assess the BJP approach, using antecedent conditions and climate indices as predictors, to produce Kharif season (April–September) streamflow forecasts for inflow to Pakistan's two largest upper Indus Basin (UIB) water supply dams, Tarbela (on the Indus) and Mangla (on the Jhelum). For Mangla, we compare these BJP forecasts to (i) ensemble streamflow predictions (ESPs) from the snowmelt runoff model (SRM) and (ii) a hybrid approach using the BJP with SRM–ESP forecast means as an additional predictor. For Tarbela, we only assess BJP forecasts using antecedent and climate predictors as we did not have access to SRM for this location. Cross validation of the streamflow forecasts shows that the BJP approach using two predictors (March flow and an El Niño Southern Oscillation, ENSO, climate index) provides skilful probabilistic forecasts that are reliable in uncertainty spread for both Mangla and Tarbela. For Mangla, the SRM approach leads to forecasts that exhibit some bias and are unreliable in uncertainty spread, and the hybrid approach does not result in better forecast skill. Skill levels for Kharif (April–September), early Kharif (April–June) and late Kharif (July–September) BJP forecasts vary between the two locations. Forecasts for Mangla show high skill for early Kharif and moderate skill for all Kharif and late Kharif, whereas forecasts for Tarbela also show moderate skill for all Kharif and late Kharif, but low skill for early Kharif. The BJP approach is simple to apply, with small input data requirements and automated calibration and forecast generation. It offers a tool for rapid deployment at many locations across the UIB to provide probabilistic seasonal streamflow forecasts that can inform Pakistan's basin water management.

Funder

Department of Foreign Affairs and Trade, Australian Government

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference82 articles.

1. Afzal, M., Haroon, M. A., Rana, A. S., and Imran, A.: Influence of North Atlantic Oscillations and Southern Oscillations on winter precipitation of northern Pakistan, Pakistan J. Meteorol., 9, 1–8, 2013.

2. Ahmed, K. and Sanchez, M.: A study of the factors and processes involved in the sedimentation of Tarbela reservoir, Pakistan, Environ. Earth Sci., 62, 927–933, https://doi.org/10.1007/s12665-010-0578-3, 2011.

3. Alford, D., Archer, D., Bookhagen, B., Grabs, W., Halvorson, S., Hewitt, K., Immerzeel, W., Kamp, U., and Krumwiede, B.: Monitoring of glaciers, climate and runoff in the Hindu Kush-Himalaya mountains, South Asia Water Initiative Report No. 67668-SAS, World Bank, Washington, D.C., 2014.

4. Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen, B., and Lettenmaier, D. P.: Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments, Water Resour. Res., 52, 4209–4225, https://doi.org/10.1002/2015WR017864, 2016.

5. Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications, Hydrol. Earth Syst. Sci., 8, 47–61, https://doi.org/10.5194/hess-8-47-2004, 2004.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3