Flood Risk Assessment Based on Hydrodynamic Model—A Case of the China–Pakistan Economic Corridor

Author:

Sun Xiaolin1,Jin Ke1,Tao Hui2,Duan Zheng3,Gao Chao14ORCID

Affiliation:

1. Department of Geography and Spatial Information Techniques, Zhejiang Collaborative Innovation Center & Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo 315211, China

2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden

4. Donghai Academy, Zhejiang Ocean Development Think Tank Alliance, Ningbo University, Ningbo 315211, China

Abstract

Under global warming, flooding has become one of the most destructive natural disasters along the China–Pakistan Economic Corridor (CPEC), which significantly jeopardizes the construction and ongoing stability of the CPEC. The assessment of regional flood potential is, therefore, crucial for effective flood prevention and relief measures. In light of this, our study applied MIKE 11 hydrodynamic model for the Indus River Basin of Pakistan to achieve a comprehensive analysis of the flood-affected locations and depths under typical scenarios. The flood risk zones along the CPEC were evaluated using the indicator system method in conjunction with the combination weighting method. The results show that the hydrodynamic model has a Nash–Sutcliffe efficiency of 0.86, allowing for the investigation of floods at more precise temporal and spatial scales. Punjab, Sindh, and Balochistan Provinces are the main inundation areas under a 100-year flood scenario, with inundation depths ranging from 1 to 4 m. The coastal regions of Sindh and Hafizabad in Punjab witnessed the most severe floods, with maximum inundation depths exceeding 8 m. Flooding predominantly impacts the southeastern region of the CPEC. The medium- to high-risk zones comprise 25.56% of the region, while high-risk areas constitute 4.18%. Particularly, the eastern and southern regions of Punjab, along with the central and southern regions of Sindh, have been pinpointed as high-risk areas, primarily due to their dense population and riverine characteristics. Overall, our findings provide a scientific basis for informed decision making pertaining to disaster reduction and flood prevention.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3