Hydrologic interpretation of machine learning models for 10-daily streamflow simulation in climate sensitive upper Indus catchments

Author:

Mushtaq Haris,Akhtar Taimoor,Hashmi Muhammad Zia ur Rahman,Masood Amjad,Saeed Fahad

Abstract

AbstractMachine learning for hydrologic modeling has seen significant recent development and has been suggested as a valuable augmentation to physical hydrological modeling, especially in data-scarce catchments. In Pakistan, surface water flows predominantly originate from the transboundary Upper Indus sub-catchments of Chenab, Jhelum, Indus, and Kabul rivers. These catchments have large drainage areas, climate-driven streamflows, high variations in elevation, and limited streamflow gauge coverage. Hence, using machine learning models for data-driven river flow modeling may be well-suited for these catchments. However, hydrologic interpretability of machine learning models is important for the practical use of such models for these catchments. Thus, the current study besides evaluating the potential of three machine learning models (XGBOOST, Classification and Regression Trees(CART), and RandomForest) for streamflow simulation also focused on the hydrologic interpretation of machine learning models using SHapley Additive exPlananations (SHAP). All of these models performed well and the range of $$\textrm{R}^2$$ R 2 and Nasche-Efficiency for all three models lies between 0.61 to 0.90. Moreover, SHAP correctly identified minimum temperature as the most critical feature in glacier-fed Indus and Chenab catchments. It also provides logical insights into interactions between minimum temperature and precipitation for the indus and Chenab catchment. The findings of this study strongly illustrate the usefulness of SHAP analysis in interpreting the behavior of data-scarce high-elevation climate-sensitive catchments using tree-based machine learning models.

Funder

European Union’s Horizon 2020 research and innovation programmes

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3