Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
-
Published:2020-12-21
Issue:12
Volume:13
Page:6989-6997
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Yuan TianleORCID, Song HuaORCID, Wood RobertORCID, Mohrmann JohannesORCID, Meyer KerryORCID, Oreopoulos LazarosORCID, Platnick Steven
Abstract
Abstract. Marine low clouds display rich mesoscale morphological types and distinct
spatial patterns of cloud fields. Being able to differentiate low-cloud
morphology offers a tool for the research community to go one step beyond
bulk cloud statistics such as cloud fraction and advance the understanding
of low clouds. Here we report the progress of our project that aims to
create an observational record of low-cloud mesoscale morphology at a
near-global (60∘ S–60∘ N) scale. First, a training set is created by our team members manually labeling thousands of mesoscale (128×128) MODIS scenes into six different categories: stratus, closed cellular convection, disorganized convection, open cellular convection, clustered cumulus convection, and suppressed cumulus convection. Then we train a deep convolutional neural network model using this training set to classify individual MODIS scenes at 128×128 resolution and test it on a test set. The trained model achieves a
cross-type average precision of about 93 %. We apply the trained model to 16 years of data over the southeastern Pacific. The resulting climatological distribution of low-cloud morphology types shows both expected and unexpected features and suggests promising potential for low-cloud studies as a data product.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference17 articles.
1. Agee, E. M. and Dowell, K. E.: Observational Studies of Mesoscale Cellular
Convection, J. Appl. Meteor., 13, 46–53,
https://doi.org/10.1175/1520-0450(1974)013<0046:OSOMCC>2.0.CO;2, 1974. 2. Atkinson, B. W. and Zhang, W. J.: Mesoscale shallow convection in the
atmosphere, Rev. Geophys., 34, 403–431, https://doi.org/10.1029/96RG02623, 1996. 3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F. F.: ImageNet:
A large-scale hierarchical image database, IEEE Computer Vision and Pattern Recognition (CVPR), 248–255, 2009. 4. Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 5. LAADS DAAC, NASA, Goddard Space Flight Center, <span class="uri">https://ladsweb.modaps.eosdis.nasa.gov/</span>, last access: 28 November 2020.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|