On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific

Author:

Lang Francisco,Siems Steven T.,Huang Yi,Alinejadtabrizi Tahereh,Ackermann Luis

Abstract

Abstract. Marine atmospheric boundary layer (MABL) clouds cover vast areas over the ocean and have important radiative effects on the Earth's climate system. These radiative effects are known to be sensitive to the local organization, or structure, of the mesoscale cellular convection (MCC). A convolutional neural network model is used to identify the two idealized classes of MCC clouds, namely open and closed, over the Southern Ocean (SO) and Northwest Pacific (NP) from high-frequency geostationary Himawari-8 satellite observations. The results of the climatology show that MCC clouds are evenly distributed over the mid-latitude storm tracks for both hemispheres, with peaks poleward of the 40∘ latitude. Open-MCC clouds are more prevalent than closed MCC in both regions. An examination of the presumed meteorological forcing associated with open- and closed-MCC clouds is conducted to illustrate the influence of large-scale meteorological conditions. We establish the importance of the Kuroshio western boundary current in the spatial coverage of open and closed MCC across the NP, presumably through the supply of strong heat and moisture fluxes during marine cold-air outbreaks events. In regions where static stability is higher, we observe a more frequent occurrence of closed MCCs. This behavior contrasts markedly with that of open MCCs, whose formation and persistence are significantly influenced by the difference in temperature between the air and the sea surface. The occurrence frequency of closed MCC over the SO exhibits a significant diurnal cycle, while the diurnal cycle of closed MCC over the NP is less noticeable.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3