Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN)

Author:

Segal Rozenhaimer Michal12ORCID,Nukrai David3,Che Haochi24ORCID,Wood Robert5ORCID,Zhang Zhibo6

Affiliation:

1. Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA 94035, USA

2. Department of Geophysics, Porter School of Environmental and Earth Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel

3. Department of Computer Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel

4. Department of Geosciences, University of Oslo, 0371 Oslo, Norway

5. Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA

6. Department of Physics, University of Maryland, UMBC, Baltimore, MD 21250, USA

Abstract

Marine stratocumulus (MSC) clouds are important to the climate as they cover vast areas of the ocean’s surface, greatly affecting radiation balance of the Earth. Satellite imagery shows that MSC clouds exhibit different morphologies of closed or open mesoscale cellular convection (MCC) but many limitations still exist in studying MCC dynamics. Here, we present a convolutional neural network algorithm to classify pixel-level closed and open MCC cloud types, trained by either visible or infrared channels from a geostationary SEVIRI satellite to allow, for the first time, their diurnal detection, with a 30 min. temporal resolution. Our probability of detection was 91% and 92% for closed and open MCC, respectively, which is in line with day-only detection schemes. We focused on the South-East Atlantic Ocean during months of biomass burning season, between 2016 and 2018. Our resulting MCC type area coverage, cloud effective radii, and cloud optical depth probability distributions over the research domain compare well with monthly and daily averages from MODIS. We further applied our algorithm on GOES-16 imagery over the South-East Pacific (SEP), another semi-permanent MCC domain, and were able to show good prediction skills, thereby representing the SEP diurnal cycle and the feasibility of our method to be applied globally on different satellite platforms.

Funder

NASA Atmospheric Composition and Modeling program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3