Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, Hyytiälä, Finland

Author:

Buenrostro Mazon S.,Riipinen I.,Schultz D. M.,Valtanen M.,Dal Maso M.,Sogacheva L.,Junninen H.,Nieminen T.,Kerminen V.-M.,Kulmala M.

Abstract

Abstract. Studies of secondary aerosol-particle formation depend on identifying days in which new particle formation occurs and, by comparing them to days with no signs of particle formation, identifying the conditions favourable for formation. Continuous aerosol size distribution data has been collected at the SMEAR II station in a boreal forest in Hyytiälä, Finland, since 1996, making it the longest time series of aerosol size distributions available worldwide. In previous studies, the data have been classified as particle-formation event, nonevent, and undefined days, with almost 40% of the dataset classified as undefined. In the present study, eleven years (1996–2006) of undefined days (1630 days) were reanalyzed and subdivided into three new classes: failed events (37% of all previously undefined days), ultrafine-mode concentration peaks (34%), and pollution-related concentration peaks (19%). Unclassified days (10%) comprised the rest of the previously undefined days. The failed events were further subdivided into tail events (21%), where a tail of a formation event presumed to be advected to Hyytiälä from elsewhere, and quasi events (16%) where new particles appeared at sizes 3–10 nm, but showed unclear growth, the mode persisted for less than an hour, or both. The ultrafine concentration peaks days were further subdivided into nucleation-mode peaks (24%) and Aitken-mode peaks (10%), depending on the size range where the particles occurred. The mean annual distribution of the failed events has a maximum during summer, whereas the two peak classes have maxima during winter. The summer minimum previously found in the seasonal distribution of event days partially offsets a summer maximum in failed-event days. Daily-mean relative humidity and condensation sink values are useful in discriminating the new classes from each other. Specifically, event days had low values of relative humidity and condensation sink relative to nonevent days. Failed-event days possessed intermediate condensation sink and relative humidity values, whereas both ultrafine-mode peaks and, to a greater extent, pollution-related peaks had high values of both, similar to nonevent days. Using 96-h back trajectories, particle-size concentrations were plotted as a function of time the trajectory spent over land. Increases in particle size and number concentration during failed-event days were similar to that during the later stages of event days, whereas the particle size and number concentration for both nonevent and peaks classes did not increase as fast as for event and failed events days.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3