The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H<sub>2</sub>SO<sub>4</sub>, OH, and monoterpenes measurements

Author:

Birmili W.,Berresheim H.,Plass-Dülmer C.,Elste T.,Gilge S.,Wiedensohler A.,Uhrner U.

Abstract

Abstract. Ambient aerosol size distributions (>3 nm) and OH, H2SO4, and terpene concentrations were measured from April 1998 to August 2000 at a rural continental site in southern Germany. New particle formation (NPF) events were detected on 18% of all days, typically during midday hours under sunny and dry conditions. The number of newly formed particles correlated significantly with solar irradiance and ambient levels of H2SO4. A pronounced anti-correlatation of NPF events with the pre-existing particle surface area was identified in the cold season, often associated with the advection of dry and relatively clean air masses from southerly directions (Alps). Estimates of the particle formation rate based on observations were around 1 cm-3 s-1, being in agreement with the predictions of ternary homogeneous H2SO4-NH3-H2O nucleation within a few orders of magnitude. The experimentally determined nucleation mode particle growth rates were on average 2.6 nm h-1, with a fraction of 0.7 nm h-1 being attributed to the co-condensation of H2SO4-H2O-NH3. The magnitude of nucleation mode particle growth was neither significantly correlated to H2SO4, nor to the observed particle formation rate. Turn-over rate calculations of measured monoterpenes and aromatic hydrocarbons suggest that especially the oxidation products of monoterpenes have the capacity to contribute to the growth of nucleation mode particles. Although a large number of precursor gases, aerosol and meteorological parameters were measured, the ultimate key factors controlling the occurence of NPF events could not be identified.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3