Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016

Author:

Hao Wei Min,Reeves Matthew C.,Baggett L. Scott,Balkanski YvesORCID,Ciais Philippe,Nordgren Bryce L.,Petkov Alexander,Corley Rachel E.,Mouillot FlorentORCID,Urbanski Shawn P.,Yue ChaoORCID

Abstract

Abstract. Northern Eurasia is currently highly sensitive to climate change. Fires in this region can have significant impacts on regional air quality, radiative forcing and black carbon deposition in the Arctic which can accelerate ice melting. Using a MODIS-derived burned area dataset, we report that the total annual area burned in this region declined by 53 % during the 15-year period from 2002 to 2016. Grassland fires dominated this trend, accounting for 93 % of the decline in the total area burned. Grassland fires in Kazakhstan contributed 47 % of the total area burned and 84 % of the decline. A wetter climate and increased grazing are the principle driving forces for the decline. Our findings (1) highlight the importance of the complex interactions of climate–vegetation–land use in affecting fire activity and (2) reveal how the resulting impacts on fire activity in a relatively small region such as Kazakhstan can dominate the trends in burned areas across a much larger landscape of northern Eurasia.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3