Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020

Author:

Tian Jiaxin,Chen Xiaoning,Cao Yunfeng,Chen Feng

Abstract

Wildfires play a critical role in re-shaping boreal ecosystems and climate. It was projected that, owing to the Arctic amplification, boreal wildfires would become more frequent and severe in the coming decades. Although provoking concern, the spatiotemporal changes in boreal wildfires remain unclear, and there are substantial inconsistencies among previous findings. In this study, we performed a comprehensive analysis to determine the spatiotemporal changes in wildfires over Northern Eurasia (NEA) from 2003 to 2020 using a reconstructed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product. We found that wildfires in NEA exhibited contrasting changes in different latitudinal zones, land cover types, and seasons from 2003 to 2020. Cropland wildfires, mainly distributed at low latitudes (50–60°N), considerably decreased by 81% during the study period. Whereas forest wildfires ignited at high latitudes (north of 60°N) have nearly tripled (increasing at rate of 11~13% per year) during the past two decades. The southwestern and northeastern NEA regions exhibited contrasting patterns of wildfire changes. The active fire counts in the southwestern NEA decreased by 90% at a rate of 0.29(±0.12) × 105 per year, with cropland fires contributing to ~66% of the decrease. However, the fire counts in the northeastern NEA increased by 292% at a rate of 0.23(±0.12) × 105 per year, with boreal forests contributing to ~97% of the increase. It is worth noting that the contrasting changes in wildfires during the past two decades have led to significant structural alternation in the NEA wildfire composition. Forest fires, contributing over 60% of the total fire counts in NEA nowadays, have become the predominant component of the NEA wildfires. The contrasting changes in NEA wildfires imply that more forest fires may emerge in far northern regions of the North Hemisphere as the Arctic becomes progressively warmer in the coming decades. As wildfires continue to increase, more gases and aerosols would be released to the atmosphere and cause considerable feedback to the Arctic climate. The increased wildfire-related climate feedbacks should, therefore, be seriously considered in climate models and projections.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3