Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe – Part 1: Model description, evaluation of meteorological predictions, and aerosol–meteorology interactions
-
Published:2013-07-22
Issue:14
Volume:13
Page:6807-6843
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhang Y.,Sartelet K.,Wu S.-Y.,Seigneur C.
Abstract
Abstract. Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g., lack of soil temperature and moisture nudging), limitations in the physical parameterizations (e.g., shortwave radiation, cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g., snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvements for WS10, WD10, Precip, and some mesoscale events (e.g., strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. The WRF/Chem simulations with and without aerosols show that aerosols lead to reduced net shortwave radiation fluxes, 2 m temperature, 10 m wind speed, planetary boundary layer (PBL) height, and precipitation and increase aerosol optical depth, cloud condensation nuclei, cloud optical depth, and cloud droplet number concentrations over most of the domain. These results indicate a need to further improve the model representations of the above parameterizations as well as aerosol–meteorology interactions at all scales.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference133 articles.
1. Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation. 3. Sectional representation, J. Geophys. Res., 107, D3, 4026, https://doi.org/10.1029/2001JD000483, 2002. 2. Aphekom (Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe): Summary report of the Aphekom project, 2008–2011, Institute De Veille Sanitaire, 94415, Saint-Maurice Cedex, France, 2011. 3. Baklanov, A., Hänninen, O., Slørdal, L. H., Kukkonen, J., Bjergene, N., Fay, B., Finardi, S., Hoe, S. C., Jantunen, M., Karppinen, A., Rasmussen, A., Skouloudis, A., Sokhi, R. S., Sørensen, J. H., and Ødegaard, V.: Integrated systems for forecasting urban meteorology, air pollution and population exposure, Atmos. Chem. Phys., 7, 855–874, https://doi.org/10.5194/acp-7-855-2007, 2007. 4. Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., and Gross, A.: ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution, Adv. Sci. Res., 2, 41–46, https://doi.org/10.5194/asr-2-41-2008, 2008. 5. Baklanov, A.: Chemical weather forecasting: a new concept of integrated modelling, Adv. Sci. Res., 4, 23–27, https://doi.org/10.5194/asr-4-23-2010, 2010.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|