1. Akhmetshina, A.S., Kizhner, L.I., Kuzhevskaya, I.V., et al., Using WRF mesoscale model to restore temperature profile in atmosphere boundary layer in Tomsk, in Proceedings of SPIE,
2015, vol. 9680: 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, 2015, pp. 968069-1–968069-5. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000552252.
2. Al-Hemoud, A., Al-Sudairawi, M., Al-Rashidi, M., et al., Temperature inversion and mixing height: Critical indicators for air pollution in hot arid climate, Nat. Hazards, 2019, pp. 139–155. https://doi.org/10.1007/s11069-019-03631-2
3. Baranov, N.A., Forecasting time series of meteorological parameters using the approach of neural differential equations, in Differentsial’nye uravneniya, matematicheskoe modelirovanie i vychislitel’nye algoritmy: sbornik materialov mezhdunarodnoi konferentsii (Differential Equations, Mathematical Modeling and Computational Algorithms: Proceedings of the International Conference), Vasil’ev, V.B. and Lomov, I.S., Eds., Belgorod: ID BelGU NIU BelGU, 2021, pp. 127–130.
4. Baranov, N.A. and Lemishchenko, E.V., Forecasting temperature profile based on blending of measurement data and numerical prediction models, Int. J. Circuits Syst. Signal Process., 2018, vol. 12, pp. 235–239.
5. Borge, R., Alexandrov, V., del Vas, J.J., Lumbreras, J., and Rodriguez, E., A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. Environ., 2008, vol. 42, pp. 8560–8574.