Towards monitoring localized CO<sub>2</sub> emissions from space: co-located regional CO<sub>2</sub> and NO<sub>2</sub> enhancements observed by the OCO-2 and S5P satellites

Author:

Reuter MaximilianORCID,Buchwitz MichaelORCID,Schneising OliverORCID,Krautwurst SvenORCID,O'Dell Christopher W.,Richter AndreasORCID,Bovensmann HeinrichORCID,Burrows John P.ORCID

Abstract

Abstract. Despite its key role in climate change, large uncertainties persist in our knowledge of the anthropogenic emissions of carbon dioxide (CO2) and no global observing system exists that allows us to monitor emissions from localized CO2 sources with sufficient accuracy. The Orbiting Carbon Observatory-2 (OCO-2) satellite allows retrievals of the column-average dry-air mole fractions of CO2 (XCO2). However, regional column-average enhancements of individual point sources are usually small, compared to the background concentration and its natural variability, and often not much larger than the satellite's measurement noise. This makes the unambiguous identification and quantification of anthropogenic emission plume signals challenging. NO2 is co-emitted with CO2 when fossil fuels are combusted at high temperatures. It has a short lifetime on the order of hours so that NO2 columns often greatly exceed background and noise levels of modern satellite sensors near sources, which makes it a suitable tracer of recently emitted CO2. Based on six case studies (Moscow, Russia; Lipetsk, Russia; Baghdad, Iraq; Medupi and Matimba power plants, South Africa; Australian wildfires; and Nanjing, China), we demonstrate the usefulness of simultaneous satellite observations of NO2 and XCO2. For this purpose, we analyze co-located regional enhancements of XCO2 observed by OCO-2 and NO2 from the Sentinel-5 Precursor (S5P) satellite and estimate the CO2 plume's cross-sectional fluxes. We take advantage of the nearly simultaneous NO2 measurements with S5P's wide swath and small measurement noise by identifying the source of the observed XCO2 enhancements, excluding interference with remote upwind sources, allowing us to adjust the wind direction, and by constraining the shape of the CO2 plumes. We compare the inferred cross-sectional fluxes with the Emissions Database for Global Atmospheric Research (EDGAR), the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC), and, in the case of the Australian wildfires, with the Global Fire Emissions Database (GFED). The inferred cross-sectional fluxes range from 31 MtCO2 a−1 to 153 MtCO2 a−1 with uncertainties (1σ) between 23 % and 72 %. For the majority of analyzed emission sources, the estimated cross-sectional fluxes agree, within their uncertainty, with either EDGAR or ODIAC or lie somewhere between them. We assess the contribution of multiple sources of uncertainty and find that the dominating contributions are related to the computation of the effective wind speed normal to the plume's cross section. The flux uncertainties are expected to be reduced by the planned European Copernicus anthropogenic CO2 monitoring mission (CO2M), which will provide not only precise measurements with high spatial resolution but also imaging capabilities with a wider swath of simultaneous XCO2 and NO2 observations. Such a mission, particularly if performed by a constellation of satellites, will deliver CO2 emission estimates from localized sources at an unprecedented frequency and level of accuracy.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference27 articles.

1. Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007. a

2. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A.: SCIAMACHY – Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056&lt;0127:SMOAMM&gt;2.0.CO;2, 1999. a

3. Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010. a, b

4. Brunner, D., Kuhlmann, G., Marshall, J., Clément, V., Fuhrer, O., Broquet, G., Löscher, A., and Meijer, Y.: Accounting for the vertical distribution of emissions in atmospheric CO2 simulations, Atmos. Chem. Phys., 19, 4541–4559, https://doi.org/10.5194/acp-19-4541-2019, 2019. a

5. Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., Burrows, J. P., Boesch, H., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Frankenberg, C., and Turner, A. J.: Satellite-derived methane hotspot emission estimates using a fast data-driven method, Atmos. Chem. Phys., 17, 5751–5774, https://doi.org/10.5194/acp-17-5751-2017, 2017. a

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3