A portable reflected-sunlight spectrometer for CO2 and CH4

Author:

Löw Benedikt A.ORCID,Kleinschek Ralph,Enders Vincent,Sander Stanley P.,Pongetti Thomas J.,Schmitt Tobias D.ORCID,Hase Frank,Kostinek Julian,Butz AndréORCID

Abstract

Abstract. Mapping the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) above source regions such as urban areas can deliver insights into the distribution and dynamics of local emission patterns. Here, we present the prototype development and an initial performance evaluation of a portable spectrometer that allows for measuring CO2 and CH4 concentrations integrated along a long (>10 km) horizontal path component through the atmospheric boundary layer above a target region. To this end, the spectrometer is positioned at an elevated site from which it points downward at reflection targets in the region, collecting the reflected sunlight at shallow viewing angles. The path-integrated CO2 and CH4 concentrations are inferred from the absorption fingerprint in the shortwave–infrared (SWIR) spectral range. While mimicking the concept of the stationary California Laboratory for Atmospheric Remote Sensing – Fourier Transform Spectrometer (CLARS-FTS) in Los Angeles, our portable setup requires minimal infrastructure and is straightforward to duplicate and to operate in various locations. For performance evaluation, we deployed the instrument, termed EM27/SCA, side by side with the CLARS-FTS at the Mt. Wilson Observatory (1670 m a.s.l.) above Los Angeles for a 1-month period in April/May 2022. We determined the relative precision of the retrieved slant column densities (SCDs) for urban reflection targets to be 0.36 %–0.55 % for O2, CO2 and CH4, where O2 is relevant for light path estimation. For the partial vertical column (VCD) below instrument level, which is the quantity carrying emission information, the propagated precision errors amount to 0.75 %–2 % for the three gases depending on the distance to the reflection target and solar zenith angle. The comparison to simultaneous CLARS-FTS measurements shows good consistency, but the observed diurnal patterns highlight the need to take light scattering into account to enable detection of emission patterns.

Funder

Deutsche Forschungsgemeinschaft

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3