Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica
-
Published:2019-05-15
Issue:5
Volume:13
Page:1473-1485
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Jakobs Constantijn L.ORCID, Reijmer Carleen H.ORCID, Kuipers Munneke PeterORCID, König-Langlo Gert, van den Broeke Michiel R.ORCID
Abstract
Abstract. We use 24 years (1992–2016) of high-quality meteorological observations at
Neumayer Station, East Antarctica, to force a surface energy balance model.
The modelled 24-year cumulative surface melt at Neumayer amounts to 1154 mm
water equivalent (w.e.), with only a small uncertainty (±3 mm w.e.)
from random measurement errors. Results are more sensitive to the chosen
value for the surface momentum roughness length and new snow density,
yielding a range of 900–1220 mm w.e. Melt at Neumayer occurs only in the
months November to February, with a summer average of 50 mm w.e. and large
interannual variability (σ=42 mm w.e.). This is a small value
compared to an annual average (1992–2016) accumulation of 415±86 mm w.e. Absorbed shortwave radiation is the dominant driver of temporal
melt variability at Neumayer. To assess the importance of the
snowmelt–albedo feedback we include and calibrate an albedo parameterisation
in the surface energy balance model. We show that, without the
snowmelt–albedo feedback, surface melt at Neumayer would be approximately
3 times weaker, demonstrating how important it is to correctly represent this
feedback in model simulations of surface melt in Antarctica.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference60 articles.
1. Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard,
G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal
Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal
East Antarctica, Bound.-Lay. Meteorol., 164, 107–133,
https://doi.org/10.1007/s10546-017-0242-5, 2017. a 2. Andreas, E. L.: A theory for the scalar roughness and the scalar transfer
coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184,
https://doi.org/10.1007/BF00121562, 1987. a, b 3. Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J.,
Zappa,
C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.: Antarctic ice shelf
potentially stabilized by export of meltwater in surface river, Nature, 544,
344–348, https://doi.org/10.1038/nature22048, 2017. a 4. Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and
Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and
atmospheric drivers, The Cryosphere, 6, 821–839,
https://doi.org/10.5194/tc-6-821-2012, 2012. a, b, c 5. Brandt, R. E. and Warren, S. G.: Solar-heating rates and temperature profiles
in Antarctic snow and ice, J. Glaciol., 39, 99–110,
https://doi.org/10.3189/S0022143000015756, 1993. a
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|