A physics-based Antarctic melt detection technique: combining Advanced Microwave Scanning Radiometer 2, radiative-transfer modeling, and firn modeling

Author:

Dattler Marissa E.ORCID,Medley BrookeORCID,Stevens C. Max

Abstract

Abstract. Surface melt on ice shelves has been linked to hydrofracture and subsequent ice shelf breakup. Since the 1990s, scientists have been using microwave radiometers to detect melt on ice shelves and ice sheets by applying various statistical thresholding techniques to identify significant increases in brightness temperature that are associated with melt. In this study, instead of using a fixed threshold, we force the Snow Microwave Radiative Transfer model (SMRT) with outputs from the Community Firn Model (CFM) to create a dynamic, physics-based threshold for melt. In the process, we also combine our method with statistical thresholding techniques and produce microwave grain-size information. We run this “hybrid method” across the Larsen C ice shelf as well as 13 sites on the Antarctic Ice Sheet. Melt and non-melt days from the hybrid method and three statistical thresholding techniques match with the surface energy balance within 94 ± 1 %; the effect of melt on the passive microwaves is mostly binary and thus largely detectable by statistical thresholding techniques as well as physics-based techniques. Rather than always replacing statistical thresholding techniques with the hybrid method, we recommend using the hybrid method in studies where the melt volume or grain size is of interest. In this study, we show that the hybrid method can be used to (a) model dry-snow brightness temperatures of Antarctic snow and (b) derive a measure of grain size; therefore, it is an important step forwards towards using firn and radiative-transfer modeling to quantify melt rather than to simply detect melt days.

Funder

NASA Headquarters

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3