Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog

Author:

He HongxingORCID,Moore TimORCID,Humphreys Elyn R.ORCID,Lafleur Peter M.,Roulet Nigel T.ORCID

Abstract

Abstract. The carbon (C) dynamics of northern peatlands are sensitive to hydrological changes owing to ecohydrological feedbacks. We quantified and evaluated the impact of water level variations in a beaver pond (BP) on the CO2 flux dynamics of an adjacent, raised Sphagnum–shrub-dominated bog in southern Canada. We applied the CoupModel to the Mer Bleue bog, where the hydrological, energy and CO2 fluxes have been measured continuously for over 20 years. The lateral flow of water from the bog to the BP was estimated by the hydraulic gradient between the peatland and the BP's water level and the vertical profile of peat hydraulic conductivity. The model outputs were compared with the measured hydrological components, CO2 flux and energy flux data (1998–2019). CoupModel was able to reproduce the measured data well. The simulation shows that variation in the BP water level (naturally occurring or due to management) influenced the bog net ecosystem exchange (NEE) of CO2. Over 1998–2004, the BP water level was 0.75 to 1.0 m lower than during 2017–2019. Simulated net CO2 uptake was 55 gCm-2yr-1 lower during 1998–2004 compared to 2017–2019 when there was no BP disturbance, which was similar to the differences in measured NEE between those periods. Peatland annual NEE was well correlated with water table depth (WTD) within the bog, and NEE also shows a linear relation with the water level at the BP, with a slope of −120 gCO2-Cm-2yr-1m-1. The current modelling predicts that the bog may switch from CO2 sink to source when the BP water levels drop lower than ∼ 1.7 m below the peat surface at the eddy covariance (EC) tower, located on the bog surface 250 m from the BP. This study highlights the importance of natural and human disturbances to adjacent water bodies in regulating the net CO2 uptake function of northern peatlands.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3