Fine-scale vegetation distribution in a cool temperate peatland

Author:

Bubier Jill L.12,Moore Tim R.12,Crosby Gareth12

Affiliation:

1. Department of Earth and Environment, Mount Holyoke College, South Hadley, MA 01075, USA.

2. Department of Geography and Global Environmental and Climate Change Centre, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.

Abstract

Carbon (C) modeling and carbon dioxide (CO2) flux measurements in peatlands are dependent on the distribution and productivity of vegetation in a system with a high degree of spatial variability, often linked to the position of the water table. We tested the hypothesis that at a fine-scale (tens of metres) water table position exerts a strong control on species abundance, plant biomass, particularly photosynthetically active tissues, leaf area index (LAI), and areal foliar N and chlorophyll at Mer Bleue, a cool temperate peatland in eastern Canada. Total aboveground biomass ranged from 147 to 1011 g·m–2, with shrubs contributing between 42% and 72% of the total in the transects. We found significant (P < 0.05) positive relationships between foliar and total vascular plant biomass and mean water table position, and significant decreases in the shrub foliar:woody biomass ratio and moss biomass with a lower water table. However, there was no significant relationship between water table position and photosynthetically active tissues (vascular plant leaves and moss capitulum), ranging from 114 to 672 g·m–2) and the areal mass of N in these tissues, ranging from 1.5 to 6.7 g·m–2. Multivariate analyses of vegetation and environmental data showed that species distribution could be explained by both water table and chemistry gradients and that unimodal rather than linear responses best described the species and water table relationships. LAI ranged from 0.1 to over 3 and was correlated with both water table position and with vascular foliar biomass. Percent cover of shrubs was correlated with foliar biomass and LAI. Our results suggest that the less labour-intensive estimates of percent cover can be used to predict the vascular plant foliar biomass and LAI measurements. The lack of relationship between photosynthetically active tissues, tissue N concentrations, and water table may also explain the surprising lack of spatial variability in peak growing season eddy flux net ecosystem CO2 exchange in three different areas of the peatland.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3