Wind as a Driver of Peat CO2 Dynamics in a Northern Bog

Author:

Campeau A.ORCID,He H.,Riml J.,Humphreys E.,Dalva M.,Roulet N.

Abstract

AbstractExcess CO2 accumulated in soils is typically transported to the atmosphere through molecular diffusion along a concentration gradient. Because of the slow and constant nature of this process, a steady state between peat CO2 production and emissions is often established. However, in peatland ecosystems, high peat porosity could foster additional non-diffusive transport processes, whose dynamics may become important to peat CO2 storage, transport and emission. Based on a continuous record of in situ peat pore CO2 concentration within the unsaturated zone of a raised bog in southern Canada, we show that changes in wind speed create large diel fluctuations in peat pore CO2 store. Peat CO2 builds up overnight and is regularly flushed out the following morning. Persistently high wind speed during the day maintains the peat CO2 with concentrations close to that of the ambient air. At night, wind speed decreases and CO2 production overtakes the transport rate leading to the accumulation of CO2 in the peat. Our results indicate that the effective diffusion coefficient fluctuates based on wind speed and generally exceeds the estimated molecular diffusion coefficient. The balance between peat CO2 accumulation and transport is most dynamic within the range of 0–2 m s−1 wind speeds, which occurs over 75% of the growing season and dominates night-time measurements. Wind therefore drives considerable temporal dynamics in peat CO2 transport and storage, particularly over sub-daily timescales, such that peat CO2 emissions can only be directly related to biological production over longer timescales.

Funder

Svenska Forskningsrådet Formas

Natural Sciences and Engineering Research Council of Canada

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3