Plant functional types and microtopography mediate climate change responses of fine roots in forested boreal peatlands

Author:

Bucher Melina,Ofiti Nicholas O. E.,Malhotra Avni

Abstract

Peatlands store one-third of the world’s soil carbon, and their climate change response is a key unknown in the global carbon cycle-climate change feedback. In particular, peatland fine root responses to varied environmental changes are poorly constrained. Here, we synthesized fine root responses to warming and water level drawdown by performing a meta-analysis of existing data from boreal forested peatlands. We found seven studies and evaluated root responses from 65 observations. Overall, both warming (from 0 to 9.0°C) and water level drawdown (from 4.0 to 62.5 cm) increased fine root growth by over an order of magnitude, with plant functional type (PFT; graminoid, shrub, and tree) better predicting fine root biomass than treatment magnitude. We observed stronger responses for trees (+374.5% for warming and +868.6% for water level drawdown) than for shrubs (+44.0% for warming and +11.5% for water level drawdown) and graminoids (+59.5% for warming and −59.8% for water level drawdown). Among PFTs, tree fine roots increased significantly and non-linearly with increasing warming treatment, while graminoid fine roots responded significantly to lowering water level, decreasing 1.7% for every 1 cm decrease in water level. Fine roots in hollows, especially of shrubs, increased more strongly than those in hummocks, suggesting a possible flattening of peatland topography with sustained hollow growth from extended warming. Our synthesis highlights the important role of PFT’s in modulating fine root responses and the need for additional belowground data from these carbon-rich and globally relevant peatland soils. The altered fine root growth documented here, implies possible shifts in plant nutrient and water uptake as well as root inputs to soil carbon stocks, which in turn could strongly moderate and shape boreal peatland responses to future climate change.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

UZH Foundation

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3